This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubsub4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) ) |
| 3 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐶 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) ) |
| 8 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 −ℎ 𝐷 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ) ) |
| 11 | oveq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( 𝐶 −ℎ 𝐷 ) = ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) → ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) = ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) → ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ 𝐷 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐷 ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) ) ) |
| 21 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 22 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 23 | ifhvhv0 | ⊢ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ∈ ℋ | |
| 24 | ifhvhv0 | ⊢ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ∈ ℋ | |
| 25 | 21 22 23 24 | hvsubsub4i | ⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) −ℎ ( if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) −ℎ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐷 ∈ ℋ , 𝐷 , 0ℎ ) ) ) |
| 26 | 5 10 15 20 25 | dedth4h | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) ) |