This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | |- ( ph -> A e. CH ) |
|
| chscl.2 | |- ( ph -> B e. CH ) |
||
| chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
||
| chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
||
| chscl.5 | |- ( ph -> H ~~>v u ) |
||
| chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
||
| Assertion | chscllem2 | |- ( ph -> F e. dom ~~>v ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | |- ( ph -> A e. CH ) |
|
| 2 | chscl.2 | |- ( ph -> B e. CH ) |
|
| 3 | chscl.3 | |- ( ph -> B C_ ( _|_ ` A ) ) |
|
| 4 | chscl.4 | |- ( ph -> H : NN --> ( A +H B ) ) |
|
| 5 | chscl.5 | |- ( ph -> H ~~>v u ) |
|
| 6 | chscl.6 | |- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
|
| 7 | 1 2 3 4 5 6 | chscllem1 | |- ( ph -> F : NN --> A ) |
| 8 | chss | |- ( A e. CH -> A C_ ~H ) |
|
| 9 | 1 8 | syl | |- ( ph -> A C_ ~H ) |
| 10 | 7 9 | fssd | |- ( ph -> F : NN --> ~H ) |
| 11 | hlimcaui | |- ( H ~~>v u -> H e. Cauchy ) |
|
| 12 | 5 11 | syl | |- ( ph -> H e. Cauchy ) |
| 13 | hcaucvg | |- ( ( H e. Cauchy /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x ) |
|
| 14 | 12 13 | sylan | |- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x ) |
| 15 | eluznn | |- ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
|
| 16 | 15 | adantll | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
| 17 | chsh | |- ( A e. CH -> A e. SH ) |
|
| 18 | 1 17 | syl | |- ( ph -> A e. SH ) |
| 19 | chsh | |- ( B e. CH -> B e. SH ) |
|
| 20 | 2 19 | syl | |- ( ph -> B e. SH ) |
| 21 | shscl | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH ) |
|
| 22 | 18 20 21 | syl2anc | |- ( ph -> ( A +H B ) e. SH ) |
| 23 | shss | |- ( ( A +H B ) e. SH -> ( A +H B ) C_ ~H ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( A +H B ) C_ ~H ) |
| 25 | 24 | adantr | |- ( ( ph /\ j e. NN ) -> ( A +H B ) C_ ~H ) |
| 26 | 4 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( H ` j ) e. ( A +H B ) ) |
| 27 | 25 26 | sseldd | |- ( ( ph /\ j e. NN ) -> ( H ` j ) e. ~H ) |
| 28 | 27 | adantrr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( H ` j ) e. ~H ) |
| 29 | 4 24 | fssd | |- ( ph -> H : NN --> ~H ) |
| 30 | 29 | adantr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> H : NN --> ~H ) |
| 31 | simprr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> k e. NN ) |
|
| 32 | 30 31 | ffvelcdmd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( H ` k ) e. ~H ) |
| 33 | hvsubcl | |- ( ( ( H ` j ) e. ~H /\ ( H ` k ) e. ~H ) -> ( ( H ` j ) -h ( H ` k ) ) e. ~H ) |
|
| 34 | 28 32 33 | syl2anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( H ` j ) -h ( H ` k ) ) e. ~H ) |
| 35 | 9 | adantr | |- ( ( ph /\ j e. NN ) -> A C_ ~H ) |
| 36 | 7 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( F ` j ) e. A ) |
| 37 | 35 36 | sseldd | |- ( ( ph /\ j e. NN ) -> ( F ` j ) e. ~H ) |
| 38 | 37 | adantrr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( F ` j ) e. ~H ) |
| 39 | 9 | adantr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> A C_ ~H ) |
| 40 | 7 | adantr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> F : NN --> A ) |
| 41 | 40 31 | ffvelcdmd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( F ` k ) e. A ) |
| 42 | 39 41 | sseldd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( F ` k ) e. ~H ) |
| 43 | hvsubcl | |- ( ( ( F ` j ) e. ~H /\ ( F ` k ) e. ~H ) -> ( ( F ` j ) -h ( F ` k ) ) e. ~H ) |
|
| 44 | 38 42 43 | syl2anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( F ` j ) -h ( F ` k ) ) e. ~H ) |
| 45 | hvsubcl | |- ( ( ( ( H ` j ) -h ( H ` k ) ) e. ~H /\ ( ( F ` j ) -h ( F ` k ) ) e. ~H ) -> ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ~H ) |
|
| 46 | 34 44 45 | syl2anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ~H ) |
| 47 | normcl | |- ( ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ~H -> ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) e. RR ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) e. RR ) |
| 49 | 48 | sqge0d | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> 0 <_ ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) |
| 50 | normcl | |- ( ( ( F ` j ) -h ( F ` k ) ) e. ~H -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) e. RR ) |
|
| 51 | 44 50 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) e. RR ) |
| 52 | 51 | resqcld | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) e. RR ) |
| 53 | 48 | resqcld | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) e. RR ) |
| 54 | 52 53 | addge01d | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( 0 <_ ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) <-> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) <_ ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) ) ) |
| 55 | 49 54 | mpbid | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) <_ ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) ) |
| 56 | 18 | adantr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> A e. SH ) |
| 57 | 36 | adantrr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( F ` j ) e. A ) |
| 58 | shsubcl | |- ( ( A e. SH /\ ( F ` j ) e. A /\ ( F ` k ) e. A ) -> ( ( F ` j ) -h ( F ` k ) ) e. A ) |
|
| 59 | 56 57 41 58 | syl3anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( F ` j ) -h ( F ` k ) ) e. A ) |
| 60 | hvsubsub4 | |- ( ( ( ( H ` j ) e. ~H /\ ( H ` k ) e. ~H ) /\ ( ( F ` j ) e. ~H /\ ( F ` k ) e. ~H ) ) -> ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) = ( ( ( H ` j ) -h ( F ` j ) ) -h ( ( H ` k ) -h ( F ` k ) ) ) ) |
|
| 61 | 28 32 38 42 60 | syl22anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) = ( ( ( H ` j ) -h ( F ` j ) ) -h ( ( H ` k ) -h ( F ` k ) ) ) ) |
| 62 | ocsh | |- ( A C_ ~H -> ( _|_ ` A ) e. SH ) |
|
| 63 | 39 62 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( _|_ ` A ) e. SH ) |
| 64 | 2fveq3 | |- ( n = j -> ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` j ) ) ) |
|
| 65 | fvex | |- ( ( projh ` A ) ` ( H ` j ) ) e. _V |
|
| 66 | 64 6 65 | fvmpt | |- ( j e. NN -> ( F ` j ) = ( ( projh ` A ) ` ( H ` j ) ) ) |
| 67 | 66 | eqcomd | |- ( j e. NN -> ( ( projh ` A ) ` ( H ` j ) ) = ( F ` j ) ) |
| 68 | 67 | adantl | |- ( ( ph /\ j e. NN ) -> ( ( projh ` A ) ` ( H ` j ) ) = ( F ` j ) ) |
| 69 | 1 | adantr | |- ( ( ph /\ j e. NN ) -> A e. CH ) |
| 70 | 9 62 | syl | |- ( ph -> ( _|_ ` A ) e. SH ) |
| 71 | shless | |- ( ( ( B e. SH /\ ( _|_ ` A ) e. SH /\ A e. SH ) /\ B C_ ( _|_ ` A ) ) -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
|
| 72 | 20 70 18 3 71 | syl31anc | |- ( ph -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
| 73 | shscom | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
|
| 74 | 18 20 73 | syl2anc | |- ( ph -> ( A +H B ) = ( B +H A ) ) |
| 75 | shscom | |- ( ( A e. SH /\ ( _|_ ` A ) e. SH ) -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
|
| 76 | 18 70 75 | syl2anc | |- ( ph -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
| 77 | 72 74 76 | 3sstr4d | |- ( ph -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
| 78 | 77 | adantr | |- ( ( ph /\ j e. NN ) -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
| 79 | 78 26 | sseldd | |- ( ( ph /\ j e. NN ) -> ( H ` j ) e. ( A +H ( _|_ ` A ) ) ) |
| 80 | pjpreeq | |- ( ( A e. CH /\ ( H ` j ) e. ( A +H ( _|_ ` A ) ) ) -> ( ( ( projh ` A ) ` ( H ` j ) ) = ( F ` j ) <-> ( ( F ` j ) e. A /\ E. x e. ( _|_ ` A ) ( H ` j ) = ( ( F ` j ) +h x ) ) ) ) |
|
| 81 | 69 79 80 | syl2anc | |- ( ( ph /\ j e. NN ) -> ( ( ( projh ` A ) ` ( H ` j ) ) = ( F ` j ) <-> ( ( F ` j ) e. A /\ E. x e. ( _|_ ` A ) ( H ` j ) = ( ( F ` j ) +h x ) ) ) ) |
| 82 | 68 81 | mpbid | |- ( ( ph /\ j e. NN ) -> ( ( F ` j ) e. A /\ E. x e. ( _|_ ` A ) ( H ` j ) = ( ( F ` j ) +h x ) ) ) |
| 83 | 82 | simprd | |- ( ( ph /\ j e. NN ) -> E. x e. ( _|_ ` A ) ( H ` j ) = ( ( F ` j ) +h x ) ) |
| 84 | 27 | adantr | |- ( ( ( ph /\ j e. NN ) /\ x e. ( _|_ ` A ) ) -> ( H ` j ) e. ~H ) |
| 85 | 37 | adantr | |- ( ( ( ph /\ j e. NN ) /\ x e. ( _|_ ` A ) ) -> ( F ` j ) e. ~H ) |
| 86 | shss | |- ( ( _|_ ` A ) e. SH -> ( _|_ ` A ) C_ ~H ) |
|
| 87 | 70 86 | syl | |- ( ph -> ( _|_ ` A ) C_ ~H ) |
| 88 | 87 | adantr | |- ( ( ph /\ j e. NN ) -> ( _|_ ` A ) C_ ~H ) |
| 89 | 88 | sselda | |- ( ( ( ph /\ j e. NN ) /\ x e. ( _|_ ` A ) ) -> x e. ~H ) |
| 90 | hvsubadd | |- ( ( ( H ` j ) e. ~H /\ ( F ` j ) e. ~H /\ x e. ~H ) -> ( ( ( H ` j ) -h ( F ` j ) ) = x <-> ( ( F ` j ) +h x ) = ( H ` j ) ) ) |
|
| 91 | 84 85 89 90 | syl3anc | |- ( ( ( ph /\ j e. NN ) /\ x e. ( _|_ ` A ) ) -> ( ( ( H ` j ) -h ( F ` j ) ) = x <-> ( ( F ` j ) +h x ) = ( H ` j ) ) ) |
| 92 | eqcom | |- ( x = ( ( H ` j ) -h ( F ` j ) ) <-> ( ( H ` j ) -h ( F ` j ) ) = x ) |
|
| 93 | eqcom | |- ( ( H ` j ) = ( ( F ` j ) +h x ) <-> ( ( F ` j ) +h x ) = ( H ` j ) ) |
|
| 94 | 91 92 93 | 3bitr4g | |- ( ( ( ph /\ j e. NN ) /\ x e. ( _|_ ` A ) ) -> ( x = ( ( H ` j ) -h ( F ` j ) ) <-> ( H ` j ) = ( ( F ` j ) +h x ) ) ) |
| 95 | 94 | rexbidva | |- ( ( ph /\ j e. NN ) -> ( E. x e. ( _|_ ` A ) x = ( ( H ` j ) -h ( F ` j ) ) <-> E. x e. ( _|_ ` A ) ( H ` j ) = ( ( F ` j ) +h x ) ) ) |
| 96 | 83 95 | mpbird | |- ( ( ph /\ j e. NN ) -> E. x e. ( _|_ ` A ) x = ( ( H ` j ) -h ( F ` j ) ) ) |
| 97 | risset | |- ( ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) <-> E. x e. ( _|_ ` A ) x = ( ( H ` j ) -h ( F ` j ) ) ) |
|
| 98 | 96 97 | sylibr | |- ( ( ph /\ j e. NN ) -> ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) ) |
| 99 | 98 | adantrr | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) ) |
| 100 | eleq1w | |- ( j = k -> ( j e. NN <-> k e. NN ) ) |
|
| 101 | 100 | anbi2d | |- ( j = k -> ( ( ph /\ j e. NN ) <-> ( ph /\ k e. NN ) ) ) |
| 102 | fveq2 | |- ( j = k -> ( H ` j ) = ( H ` k ) ) |
|
| 103 | fveq2 | |- ( j = k -> ( F ` j ) = ( F ` k ) ) |
|
| 104 | 102 103 | oveq12d | |- ( j = k -> ( ( H ` j ) -h ( F ` j ) ) = ( ( H ` k ) -h ( F ` k ) ) ) |
| 105 | 104 | eleq1d | |- ( j = k -> ( ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) <-> ( ( H ` k ) -h ( F ` k ) ) e. ( _|_ ` A ) ) ) |
| 106 | 101 105 | imbi12d | |- ( j = k -> ( ( ( ph /\ j e. NN ) -> ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) ) <-> ( ( ph /\ k e. NN ) -> ( ( H ` k ) -h ( F ` k ) ) e. ( _|_ ` A ) ) ) ) |
| 107 | 106 98 | chvarvv | |- ( ( ph /\ k e. NN ) -> ( ( H ` k ) -h ( F ` k ) ) e. ( _|_ ` A ) ) |
| 108 | 107 | adantrl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( H ` k ) -h ( F ` k ) ) e. ( _|_ ` A ) ) |
| 109 | shsubcl | |- ( ( ( _|_ ` A ) e. SH /\ ( ( H ` j ) -h ( F ` j ) ) e. ( _|_ ` A ) /\ ( ( H ` k ) -h ( F ` k ) ) e. ( _|_ ` A ) ) -> ( ( ( H ` j ) -h ( F ` j ) ) -h ( ( H ` k ) -h ( F ` k ) ) ) e. ( _|_ ` A ) ) |
|
| 110 | 63 99 108 109 | syl3anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( H ` j ) -h ( F ` j ) ) -h ( ( H ` k ) -h ( F ` k ) ) ) e. ( _|_ ` A ) ) |
| 111 | 61 110 | eqeltrd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ( _|_ ` A ) ) |
| 112 | shocorth | |- ( A e. SH -> ( ( ( ( F ` j ) -h ( F ` k ) ) e. A /\ ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ( _|_ ` A ) ) -> ( ( ( F ` j ) -h ( F ` k ) ) .ih ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = 0 ) ) |
|
| 113 | 56 112 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( ( F ` j ) -h ( F ` k ) ) e. A /\ ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ( _|_ ` A ) ) -> ( ( ( F ` j ) -h ( F ` k ) ) .ih ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = 0 ) ) |
| 114 | 59 111 113 | mp2and | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( F ` j ) -h ( F ` k ) ) .ih ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = 0 ) |
| 115 | normpyth | |- ( ( ( ( F ` j ) -h ( F ` k ) ) e. ~H /\ ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) e. ~H ) -> ( ( ( ( F ` j ) -h ( F ` k ) ) .ih ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = 0 -> ( ( normh ` ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ) ^ 2 ) = ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) ) ) |
|
| 116 | 44 46 115 | syl2anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( ( F ` j ) -h ( F ` k ) ) .ih ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = 0 -> ( ( normh ` ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ) ^ 2 ) = ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) ) ) |
| 117 | 114 116 | mpd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ) ^ 2 ) = ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) ) |
| 118 | hvpncan3 | |- ( ( ( ( F ` j ) -h ( F ` k ) ) e. ~H /\ ( ( H ` j ) -h ( H ` k ) ) e. ~H ) -> ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = ( ( H ` j ) -h ( H ` k ) ) ) |
|
| 119 | 44 34 118 | syl2anc | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) = ( ( H ` j ) -h ( H ` k ) ) ) |
| 120 | 119 | fveq2d | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ) = ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ) |
| 121 | 120 | oveq1d | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( ( F ` j ) -h ( F ` k ) ) +h ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ) ^ 2 ) = ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ^ 2 ) ) |
| 122 | 117 121 | eqtr3d | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) + ( ( normh ` ( ( ( H ` j ) -h ( H ` k ) ) -h ( ( F ` j ) -h ( F ` k ) ) ) ) ^ 2 ) ) = ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ^ 2 ) ) |
| 123 | 55 122 | breqtrd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) <_ ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ^ 2 ) ) |
| 124 | normcl | |- ( ( ( H ` j ) -h ( H ` k ) ) e. ~H -> ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) e. RR ) |
|
| 125 | 34 124 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) e. RR ) |
| 126 | normge0 | |- ( ( ( F ` j ) -h ( F ` k ) ) e. ~H -> 0 <_ ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ) |
|
| 127 | 44 126 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> 0 <_ ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ) |
| 128 | normge0 | |- ( ( ( H ` j ) -h ( H ` k ) ) e. ~H -> 0 <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ) |
|
| 129 | 34 128 | syl | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> 0 <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ) |
| 130 | 51 125 127 129 | le2sqd | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) <-> ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) ^ 2 ) <_ ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ^ 2 ) ) ) |
| 131 | 123 130 | mpbird | |- ( ( ph /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ) |
| 132 | 131 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) ) |
| 133 | 51 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) e. RR ) |
| 134 | 125 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) e. RR ) |
| 135 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 136 | 135 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> x e. RR ) |
| 137 | lelttr | |- ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) e. RR /\ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) e. RR /\ x e. RR ) -> ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) /\ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
|
| 138 | 133 134 136 137 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> ( ( ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) <_ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) /\ ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x ) -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 139 | 132 138 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ k e. NN ) ) -> ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 140 | 139 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) /\ k e. NN ) -> ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 141 | 16 140 | syldan | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x -> ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 142 | 141 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x -> A. k e. ( ZZ>= ` j ) ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 143 | 142 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( H ` j ) -h ( H ` k ) ) ) < x -> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
| 144 | 14 143 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) |
| 145 | 144 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) |
| 146 | hcau | |- ( F e. Cauchy <-> ( F : NN --> ~H /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( normh ` ( ( F ` j ) -h ( F ` k ) ) ) < x ) ) |
|
| 147 | 10 145 146 | sylanbrc | |- ( ph -> F e. Cauchy ) |
| 148 | ax-hcompl | |- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |
|
| 149 | hlimf | |- ~~>v : dom ~~>v --> ~H |
|
| 150 | ffn | |- ( ~~>v : dom ~~>v --> ~H -> ~~>v Fn dom ~~>v ) |
|
| 151 | 149 150 | ax-mp | |- ~~>v Fn dom ~~>v |
| 152 | fnbr | |- ( ( ~~>v Fn dom ~~>v /\ F ~~>v x ) -> F e. dom ~~>v ) |
|
| 153 | 151 152 | mpan | |- ( F ~~>v x -> F e. dom ~~>v ) |
| 154 | 153 | rexlimivw | |- ( E. x e. ~H F ~~>v x -> F e. dom ~~>v ) |
| 155 | 147 148 154 | 3syl | |- ( ph -> F e. dom ~~>v ) |