This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | ||
| chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | ||
| Assertion | chscl | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Cℋ ) | |
| 2 | chscl.2 | ⊢ ( 𝜑 → 𝐵 ∈ Cℋ ) | |
| 3 | chscl.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝐴 ∈ Sℋ ) |
| 6 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐵 ∈ Sℋ ) |
| 8 | shscl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐴 ∈ Cℋ ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐵 ∈ Cℋ ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 13 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ) | |
| 14 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑓 ⇝𝑣 𝑧 ) | |
| 15 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐴 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 16 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( projℎ ‘ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 17 | 10 11 12 13 14 15 16 | chscllem4 | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 18 | 17 | ex | ⊢ ( 𝜑 → ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 19 | 18 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑓 ∀ 𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 20 | isch2 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ↔ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑧 ( ( 𝑓 : ℕ ⟶ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑓 ⇝𝑣 𝑧 ) → 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) | |
| 21 | 9 19 20 | sylanbrc | ⊢ ( 𝜑 → ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ) |