This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hcaucvg | ⊢ ( ( 𝐹 ∈ Cauchy ∧ 𝐴 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hcau | ⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐹 ∈ Cauchy → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 3 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝐴 ) ) | |
| 4 | 3 | rexralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝐴 ) ) |
| 5 | 4 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ∧ 𝐴 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝐴 ) |
| 6 | 2 5 | sylan | ⊢ ( ( 𝐹 ∈ Cauchy ∧ 𝐴 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝐴 ) |