This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubadd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 𝐶 ) ) |
| 3 | eqeq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐵 +ℎ 𝐶 ) = 𝐴 ↔ ( 𝐵 +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 4 | 2 3 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 𝐶 ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 𝐶 ) ) |
| 7 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 +ℎ 𝐶 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( 𝐵 +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 9 | 6 8 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 𝐶 ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 10 | eqeq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 𝐶 ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 11 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 13 | 10 12 | bibi12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 𝐶 ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ 𝐶 ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 14 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 15 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 16 | ifhvhv0 | ⊢ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ∈ ℋ | |
| 17 | 14 15 16 | hvsubaddi | ⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) +ℎ if ( 𝐶 ∈ ℋ , 𝐶 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 18 | 4 9 13 17 | dedth3h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) ) |