This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocval | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ ℋ | |
| 3 | 1 2 | eqsstrdi | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 4 | ssel | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) ) | |
| 5 | hi01 | ⊢ ( 𝑦 ∈ ℋ → ( 0ℎ ·ih 𝑦 ) = 0 ) | |
| 6 | 4 5 | syl6 | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 0ℎ ·ih 𝑦 ) = 0 ) ) |
| 7 | 6 | ralrimiv | ⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) |
| 8 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 9 | 7 8 | jctil | ⊢ ( 𝐴 ⊆ ℋ → ( 0ℎ ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) ) |
| 10 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 0ℎ ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) ) ) | |
| 11 | 9 10 | mpbird | ⊢ ( 𝐴 ⊆ ℋ → 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) |
| 12 | 3 11 | jca | ⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℋ ) | |
| 14 | ax-his2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) ) | |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) ) |
| 16 | oveq12 | ⊢ ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = ( 0 + 0 ) ) | |
| 17 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = 0 ) |
| 19 | 15 18 | sylan9eq | ⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 21 | 20 | ancoms | ⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 22 | 13 21 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 23 | 22 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 25 | 24 | imdistanda | ⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 26 | hvaddcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) | |
| 27 | 26 | anim1i | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 28 | 25 27 | syl6 | ⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 29 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ) ) | |
| 30 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) | |
| 31 | 29 30 | anbi12d | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 32 | an4 | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) | |
| 33 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) | |
| 34 | 33 | anbi2i | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 35 | 32 34 | bitr4i | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 36 | 31 35 | bitrdi | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 37 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) | |
| 38 | 28 36 37 | 3imtr4d | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 39 | 38 | ralrimivv | ⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 40 | mul01 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) | |
| 41 | oveq2 | ⊢ ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = ( 𝑥 · 0 ) ) | |
| 42 | 41 | eqeq1d | ⊢ ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ↔ ( 𝑥 · 0 ) = 0 ) ) |
| 43 | 40 42 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 44 | 43 | ad2antrl | ⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 45 | ax-his3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) ) | |
| 46 | 45 | eqeq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 47 | 46 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 48 | 47 | ancoms | ⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 49 | 44 48 | sylibrd | ⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 50 | 13 49 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 51 | 50 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 52 | 51 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 → ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 53 | 52 | imdistanda | ⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 54 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 55 | 54 | anim1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 56 | 53 55 | syl6 | ⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 57 | 30 | anbi2d | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 58 | anass | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) | |
| 59 | 57 58 | bitr4di | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 60 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) | |
| 61 | 56 59 60 | 3imtr4d | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 62 | 61 | ralrimivv | ⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 63 | 39 62 | jca | ⊢ ( 𝐴 ⊆ ℋ → ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 64 | issh2 | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ↔ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 65 | 12 63 64 | sylanbrc | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |