This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shless | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 3 | simpl1 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Sℋ ) | |
| 4 | simpl3 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐶 ∈ Sℋ ) | |
| 5 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ Sℋ ) | |
| 8 | shsel | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 9 | 7 4 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝐵 +ℋ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 10 | 2 6 9 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 +ℋ 𝐶 ) → 𝑥 ∈ ( 𝐵 +ℋ 𝐶 ) ) ) |
| 11 | 10 | ssrdv | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |