This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality with a projection. This version of pjeq does not assume the Axiom of Choice via pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjpreeq | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | shocsh | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) | |
| 3 | shsel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) | |
| 4 | 1 2 3 | syl2anc2 | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 6 | 1 2 | syl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
| 7 | ocin | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
| 9 | pjhthmo | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) | |
| 10 | 1 6 8 9 | syl3anc | ⊢ ( 𝐻 ∈ Cℋ → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 12 | reu5 | ⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) | |
| 13 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) | |
| 14 | 13 | anbi2i | ⊢ ( ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 15 | 12 14 | bitri | ⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 16 | 5 11 15 | sylanbrc | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 17 | riotacl | ⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) → ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ) |
| 19 | eleq1 | ⊢ ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ↔ 𝐵 ∈ 𝐻 ) ) | |
| 20 | 18 19 | syl5ibcom | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 → 𝐵 ∈ 𝐻 ) ) |
| 21 | 20 | pm4.71rd | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) ) |
| 22 | shsss | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) | |
| 23 | 1 2 22 | syl2anc2 | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
| 24 | 23 | sselda | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 ∈ ℋ ) |
| 25 | pjhval | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) | |
| 26 | 24 25 | syldan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
| 28 | id | ⊢ ( 𝐵 ∈ 𝐻 → 𝐵 ∈ 𝐻 ) | |
| 29 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 +ℎ 𝑥 ) = ( 𝐵 +ℎ 𝑥 ) ) | |
| 30 | 29 | eqeq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) |
| 31 | 30 | rexbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) |
| 32 | 31 | riota2 | ⊢ ( ( 𝐵 ∈ 𝐻 ∧ ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
| 33 | 28 16 32 | syl2anr | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) ∧ 𝐵 ∈ 𝐻 ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
| 34 | 33 | pm5.32da | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐻 ∧ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) ) |
| 35 | 21 27 34 | 3bitr4d | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) |