This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsubcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) | |
| 2 | 1 | sseld | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) ) |
| 3 | 1 | sseld | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) ) |
| 4 | 2 3 | anim12d | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) ) |
| 5 | 4 | 3impib | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 6 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) | |
| 10 | 8 9 | mp3an2 | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| 12 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) | |
| 13 | 11 12 | syld3an3 | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 14 | 7 13 | eqeltrd | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |