This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hcau | ⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 2 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) = ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 5 | 4 | breq1d | ⊢ ( 𝑓 = 𝐹 → ( ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 6 | 5 | rexralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 8 | df-hcau | ⊢ Cauchy = { 𝑓 ∈ ( ℋ ↑m ℕ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 ) −ℎ ( 𝑓 ‘ 𝑧 ) ) ) < 𝑥 } | |
| 9 | 7 8 | elrab2 | ⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 10 | ax-hilex | ⊢ ℋ ∈ V | |
| 11 | nnex | ⊢ ℕ ∈ V | |
| 12 | 10 11 | elmap | ⊢ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ℋ ) |
| 13 | 12 | anbi1i | ⊢ ( ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 14 | 9 13 | bitri | ⊢ ( 𝐹 ∈ Cauchy ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 ) −ℎ ( 𝐹 ‘ 𝑧 ) ) ) < 𝑥 ) ) |