This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-hcompl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | ⊢ 𝐹 | |
| 1 | ccauold | ⊢ Cauchy | |
| 2 | 0 1 | wcel | ⊢ 𝐹 ∈ Cauchy |
| 3 | vx | ⊢ 𝑥 | |
| 4 | chba | ⊢ ℋ | |
| 5 | chli | ⊢ ⇝𝑣 | |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | 0 6 5 | wbr | ⊢ 𝐹 ⇝𝑣 𝑥 |
| 8 | 7 3 4 | wrex | ⊢ ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 |
| 9 | 2 8 | wi | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) |