This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cfsmo . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cfsmolem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ( ( 𝑔 ‘ dom 𝑧 ) ∪ ∪ 𝑡 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑡 ) ) ) | |
| cfsmolem.3 | ⊢ 𝐺 = ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) | ||
| Assertion | cfsmolem | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfsmolem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ( ( 𝑔 ‘ dom 𝑧 ) ∪ ∪ 𝑡 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑡 ) ) ) | |
| 2 | cfsmolem.3 | ⊢ 𝐺 = ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) | |
| 3 | cff1 | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) | |
| 4 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
| 5 | 4 | oneli | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → 𝑥 ∈ On ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → 𝑥 ∈ On ) |
| 7 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( cf ‘ 𝐴 ) ↔ 𝑦 ∈ ( cf ‘ 𝐴 ) ) ) | |
| 8 | 7 | 3anbi3d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ↔ ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) | |
| 13 | simpl2 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐴 ∈ On ) | |
| 14 | ontr1 | ⊢ ( ( cf ‘ 𝐴 ) ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → 𝑦 ∈ ( cf ‘ 𝐴 ) ) ) | |
| 15 | 4 14 | ax-mp | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → 𝑦 ∈ ( cf ‘ 𝐴 ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( cf ‘ 𝐴 ) ) |
| 17 | 16 | 3ad2antl3 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( cf ‘ 𝐴 ) ) |
| 18 | pm2.27 | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 19 | 12 13 17 18 | syl3anc | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 20 | 19 | ralimdva | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 21 | 2 | fveq1i | ⊢ ( 𝐺 ‘ 𝑥 ) = ( ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) ‘ 𝑥 ) |
| 22 | fvres | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) ‘ 𝑥 ) = ( recs ( 𝐹 ) ‘ 𝑥 ) ) | |
| 23 | 21 22 | eqtrid | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( recs ( 𝐹 ) ‘ 𝑥 ) ) |
| 24 | recsval | ⊢ ( 𝑥 ∈ On → ( recs ( 𝐹 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( recs ( 𝐹 ) ↾ 𝑥 ) ) ) | |
| 25 | recsfnon | ⊢ recs ( 𝐹 ) Fn On | |
| 26 | fnfun | ⊢ ( recs ( 𝐹 ) Fn On → Fun recs ( 𝐹 ) ) | |
| 27 | 25 26 | ax-mp | ⊢ Fun recs ( 𝐹 ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | resfunexg | ⊢ ( ( Fun recs ( 𝐹 ) ∧ 𝑥 ∈ V ) → ( recs ( 𝐹 ) ↾ 𝑥 ) ∈ V ) | |
| 30 | 27 28 29 | mp2an | ⊢ ( recs ( 𝐹 ) ↾ 𝑥 ) ∈ V |
| 31 | dmeq | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → dom 𝑧 = dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) | |
| 32 | 31 | fveq2d | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( 𝑔 ‘ dom 𝑧 ) = ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ) |
| 33 | fveq1 | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( 𝑧 ‘ 𝑡 ) = ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) | |
| 34 | suceq | ⊢ ( ( 𝑧 ‘ 𝑡 ) = ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) → suc ( 𝑧 ‘ 𝑡 ) = suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → suc ( 𝑧 ‘ 𝑡 ) = suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) |
| 36 | 31 35 | iuneq12d | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ∪ 𝑡 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑡 ) = ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) |
| 37 | 32 36 | uneq12d | ⊢ ( 𝑧 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( ( 𝑔 ‘ dom 𝑧 ) ∪ ∪ 𝑡 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑡 ) ) = ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) ) |
| 38 | fvex | ⊢ ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∈ V | |
| 39 | 30 | dmex | ⊢ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ∈ V |
| 40 | fvex | ⊢ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ∈ V | |
| 41 | 40 | sucex | ⊢ suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ∈ V |
| 42 | 39 41 | iunex | ⊢ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ∈ V |
| 43 | 38 42 | unex | ⊢ ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) ∈ V |
| 44 | 37 1 43 | fvmpt | ⊢ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ∈ V → ( 𝐹 ‘ ( recs ( 𝐹 ) ↾ 𝑥 ) ) = ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) ) |
| 45 | 30 44 | ax-mp | ⊢ ( 𝐹 ‘ ( recs ( 𝐹 ) ↾ 𝑥 ) ) = ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) |
| 46 | 24 45 | eqtrdi | ⊢ ( 𝑥 ∈ On → ( recs ( 𝐹 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) ) |
| 47 | onss | ⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) | |
| 48 | fnssres | ⊢ ( ( recs ( 𝐹 ) Fn On ∧ 𝑥 ⊆ On ) → ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 ) | |
| 49 | 25 47 48 | sylancr | ⊢ ( 𝑥 ∈ On → ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 50 | fndm | ⊢ ( ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 → dom ( recs ( 𝐹 ) ↾ 𝑥 ) = 𝑥 ) | |
| 51 | fveq2 | ⊢ ( dom ( recs ( 𝐹 ) ↾ 𝑥 ) = 𝑥 → ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 52 | iuneq1 | ⊢ ( dom ( recs ( 𝐹 ) ↾ 𝑥 ) = 𝑥 → ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ∪ 𝑡 ∈ 𝑥 suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) | |
| 53 | fvres | ⊢ ( 𝑡 ∈ 𝑥 → ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ( recs ( 𝐹 ) ‘ 𝑡 ) ) | |
| 54 | suceq | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ( recs ( 𝐹 ) ‘ 𝑡 ) → suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = suc ( recs ( 𝐹 ) ‘ 𝑡 ) ) | |
| 55 | 53 54 | syl | ⊢ ( 𝑡 ∈ 𝑥 → suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = suc ( recs ( 𝐹 ) ‘ 𝑡 ) ) |
| 56 | 55 | iuneq2i | ⊢ ∪ 𝑡 ∈ 𝑥 suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ∪ 𝑡 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑡 ) |
| 57 | fveq2 | ⊢ ( 𝑦 = 𝑡 → ( recs ( 𝐹 ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑡 ) ) | |
| 58 | suceq | ⊢ ( ( recs ( 𝐹 ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑡 ) → suc ( recs ( 𝐹 ) ‘ 𝑦 ) = suc ( recs ( 𝐹 ) ‘ 𝑡 ) ) | |
| 59 | 57 58 | syl | ⊢ ( 𝑦 = 𝑡 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) = suc ( recs ( 𝐹 ) ‘ 𝑡 ) ) |
| 60 | 59 | cbviunv | ⊢ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = ∪ 𝑡 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑡 ) |
| 61 | 56 60 | eqtr4i | ⊢ ∪ 𝑡 ∈ 𝑥 suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) |
| 62 | 52 61 | eqtrdi | ⊢ ( dom ( recs ( 𝐹 ) ↾ 𝑥 ) = 𝑥 → ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) = ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 63 | 51 62 | uneq12d | ⊢ ( dom ( recs ( 𝐹 ) ↾ 𝑥 ) = 𝑥 → ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 64 | 49 50 63 | 3syl | ⊢ ( 𝑥 ∈ On → ( ( 𝑔 ‘ dom ( recs ( 𝐹 ) ↾ 𝑥 ) ) ∪ ∪ 𝑡 ∈ dom ( recs ( 𝐹 ) ↾ 𝑥 ) suc ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑡 ) ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 65 | 46 64 | eqtrd | ⊢ ( 𝑥 ∈ On → ( recs ( 𝐹 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 66 | 5 65 | syl | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( recs ( 𝐹 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 67 | 23 66 | eqtrd | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 68 | 67 | 3ad2ant2 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 69 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 70 | 69 | adantl | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → Ord 𝐴 ) |
| 71 | 70 | 3ad2ant1 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → Ord 𝐴 ) |
| 72 | f1f | ⊢ ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 → 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) | |
| 73 | 72 | ffvelcdmda | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 74 | 73 | adantlr | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 75 | 74 | 3adant3 | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 76 | 2 | fveq1i | ⊢ ( 𝐺 ‘ 𝑦 ) = ( ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) ‘ 𝑦 ) |
| 77 | 15 | fvresd | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 78 | 76 77 | eqtrid | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 79 | 78 | adantrl | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 80 | 79 | ancoms | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 81 | 80 | eleq1d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ↔ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 82 | ordsucss | ⊢ ( Ord 𝐴 → ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) | |
| 83 | 69 82 | syl | ⊢ ( 𝐴 ∈ On → ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) |
| 84 | 83 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) |
| 85 | 81 84 | sylbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) |
| 86 | 85 | ralimdva | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) |
| 87 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) | |
| 88 | 86 87 | imbitrrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) ) |
| 89 | 88 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ) |
| 90 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) | |
| 91 | 90 | ex | ⊢ ( 𝐴 ∈ On → ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) ) |
| 92 | 91 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) ) |
| 93 | 81 92 | sylbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) ) |
| 94 | onsuc | ⊢ ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) | |
| 95 | 93 94 | syl6 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) ) |
| 96 | 95 | ralimdva | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) ) |
| 97 | 96 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) |
| 98 | iunon | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) | |
| 99 | 28 97 98 | sylancr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) |
| 100 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → 𝐴 ∈ On ) | |
| 101 | onsseleq | ⊢ ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ↔ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ∨ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) ) ) | |
| 102 | 99 100 101 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 ↔ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ∨ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) ) ) |
| 103 | idd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 104 | simpll | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → 𝑥 ∈ ( cf ‘ 𝐴 ) ) | |
| 105 | simprr | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → 𝐴 ∈ On ) | |
| 106 | 5 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → 𝑥 ∈ On ) |
| 107 | 5 49 | syl | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 108 | 107 | adantr | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 109 | 78 | ancoms | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 110 | fvres | ⊢ ( 𝑦 ∈ 𝑥 → ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) | |
| 111 | 110 | adantl | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 112 | 109 111 | eqtr4d | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ) |
| 113 | 112 | eleq1d | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ↔ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 114 | 113 | ralbidva | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 115 | 114 | biimpa | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 116 | ffnfv | ⊢ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ↔ ( ( recs ( 𝐹 ) ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 117 | 108 115 116 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) |
| 118 | eleq2 | ⊢ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 → ( 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ 𝐴 ) ) | |
| 119 | 118 | biimpar | ⊢ ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝑡 ∈ 𝐴 ) → 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 120 | 119 | adantrl | ⊢ ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 121 | 120 | 3adant1 | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 122 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) → 𝑡 ∈ On ) | |
| 123 | 110 | adantl | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 124 | ffvelcdm | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) | |
| 125 | 123 124 | eqeltrrd | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 126 | 125 90 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) |
| 127 | 126 | adantlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) |
| 128 | onsssuc | ⊢ ( ( 𝑡 ∈ On ∧ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ On ) → ( 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) | |
| 129 | 122 127 128 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 130 | 129 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ∧ ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 131 | 130 | rexbidva | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ∧ ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑡 ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 132 | eliun | ⊢ ( 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑡 ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) | |
| 133 | 131 132 | bitr4di | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ∧ ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 134 | 133 | ancoms | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 135 | 134 | 3adant2 | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ↔ 𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 136 | 121 135 | mpbird | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 137 | 136 | 3expa | ⊢ ( ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) ∧ ( 𝐴 ∈ On ∧ 𝑡 ∈ 𝐴 ) ) → ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 138 | 137 | anassrs | ⊢ ( ( ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 𝑡 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 139 | 138 | ralrimiva | ⊢ ( ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) ∧ 𝐴 ∈ On ) → ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 140 | 139 | expl | ⊢ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 → ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) → ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 141 | 117 140 | syl | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) → ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 142 | 141 | imp | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 143 | feq1 | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( 𝑓 : 𝑥 ⟶ 𝐴 ↔ ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) ) | |
| 144 | fveq1 | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( 𝑓 ‘ 𝑦 ) = ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ) | |
| 145 | 144 | sseq2d | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑡 ⊆ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 146 | 145 | rexbidv | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 147 | 110 | sseq2d | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝑡 ⊆ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ↔ 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 148 | 147 | rexbiia | ⊢ ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( ( recs ( 𝐹 ) ↾ 𝑥 ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 149 | 146 148 | bitrdi | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 150 | 149 | ralbidv | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 151 | 143 150 | anbi12d | ⊢ ( 𝑓 = ( recs ( 𝐹 ) ↾ 𝑥 ) → ( ( 𝑓 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) ) |
| 152 | 30 151 | spcev | ⊢ ( ( ( recs ( 𝐹 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( recs ( 𝐹 ) ‘ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 153 | 117 142 152 | syl2an2r | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ∃ 𝑓 ( 𝑓 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 154 | cfflb | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) | |
| 155 | 154 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑡 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) |
| 156 | 105 106 153 155 | syl21anc | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) |
| 157 | ontri1 | ⊢ ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ) | |
| 158 | 4 5 157 | sylancr | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ) |
| 159 | 158 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( cf ‘ 𝐴 ) ) ) |
| 160 | 156 159 | mpbid | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ¬ 𝑥 ∈ ( cf ‘ 𝐴 ) ) |
| 161 | 104 160 | pm2.21dd | ⊢ ( ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) ∧ ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 162 | 161 | ex | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ∧ 𝐴 ∈ On ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 163 | 162 | expcomd | ⊢ ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝐴 ∈ On → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 164 | 163 | com12 | ⊢ ( 𝐴 ∈ On → ( ( 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 165 | 164 | 3impib | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 166 | 103 165 | jaod | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ∨ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) = 𝐴 ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 167 | 102 166 | sylbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ⊆ 𝐴 → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 168 | 89 167 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 169 | 168 | 3adant1l | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 170 | ordunel | ⊢ ( ( Ord 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ∧ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ∈ 𝐴 ) | |
| 171 | 71 75 169 170 | syl3anc | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ∈ 𝐴 ) |
| 172 | 68 171 | eqeltrd | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 173 | 172 | 3expia | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 174 | 173 | 3impa | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 175 | 20 174 | syldc | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 176 | 175 | a1i | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 177 | 11 176 | tfis2 | ⊢ ( 𝑥 ∈ On → ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 178 | 6 177 | mpcom | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 179 | 178 | 3expia | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 180 | 179 | ralrimiv | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 181 | 4 | onssi | ⊢ ( cf ‘ 𝐴 ) ⊆ On |
| 182 | fnssres | ⊢ ( ( recs ( 𝐹 ) Fn On ∧ ( cf ‘ 𝐴 ) ⊆ On ) → ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) Fn ( cf ‘ 𝐴 ) ) | |
| 183 | 2 | fneq1i | ⊢ ( 𝐺 Fn ( cf ‘ 𝐴 ) ↔ ( recs ( 𝐹 ) ↾ ( cf ‘ 𝐴 ) ) Fn ( cf ‘ 𝐴 ) ) |
| 184 | 182 183 | sylibr | ⊢ ( ( recs ( 𝐹 ) Fn On ∧ ( cf ‘ 𝐴 ) ⊆ On ) → 𝐺 Fn ( cf ‘ 𝐴 ) ) |
| 185 | 25 181 184 | mp2an | ⊢ 𝐺 Fn ( cf ‘ 𝐴 ) |
| 186 | ffnfv | ⊢ ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ↔ ( 𝐺 Fn ( cf ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 187 | 185 186 | mpbiran | ⊢ ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ↔ ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 188 | 180 187 | sylibr | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) |
| 189 | 188 | adantlr | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ∧ 𝐴 ∈ On ) → 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) |
| 190 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 191 | 190 | adantl | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → 𝐴 ⊆ On ) |
| 192 | 4 | onordi | ⊢ Ord ( cf ‘ 𝐴 ) |
| 193 | fvex | ⊢ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ V | |
| 194 | 193 | sucid | ⊢ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) |
| 195 | fveq2 | ⊢ ( 𝑡 = 𝑦 → ( recs ( 𝐹 ) ‘ 𝑡 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) ) | |
| 196 | suceq | ⊢ ( ( recs ( 𝐹 ) ‘ 𝑡 ) = ( recs ( 𝐹 ) ‘ 𝑦 ) → suc ( recs ( 𝐹 ) ‘ 𝑡 ) = suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) | |
| 197 | 195 196 | syl | ⊢ ( 𝑡 = 𝑦 → suc ( recs ( 𝐹 ) ‘ 𝑡 ) = suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 198 | 197 | eliuni | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ∪ 𝑡 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑡 ) ) |
| 199 | 198 60 | eleqtrrdi | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 200 | 194 199 | mpan2 | ⊢ ( 𝑦 ∈ 𝑥 → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) |
| 201 | elun2 | ⊢ ( ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) | |
| 202 | 200 201 | syl | ⊢ ( 𝑦 ∈ 𝑥 → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 203 | 202 | adantr | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 204 | 5 | adantl | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → 𝑥 ∈ On ) |
| 205 | 204 65 | syl | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( recs ( 𝐹 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) ) |
| 206 | 203 205 | eleqtrrd | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( recs ( 𝐹 ) ‘ 𝑦 ) ∈ ( recs ( 𝐹 ) ‘ 𝑥 ) ) |
| 207 | 23 | adantl | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) = ( recs ( 𝐹 ) ‘ 𝑥 ) ) |
| 208 | 206 78 207 | 3eltr4d | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( cf ‘ 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) ) |
| 209 | 208 | expcom | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) ) ) |
| 210 | 209 | ralrimiv | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) ) |
| 211 | 210 | rgen | ⊢ ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) |
| 212 | issmo2 | ⊢ ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 → ( ( 𝐴 ⊆ On ∧ Ord ( cf ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) ) → Smo 𝐺 ) ) | |
| 213 | 212 | com12 | ⊢ ( ( 𝐴 ⊆ On ∧ Ord ( cf ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( cf ‘ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ 𝑥 ) ) → ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 → Smo 𝐺 ) ) |
| 214 | 192 211 213 | mp3an23 | ⊢ ( 𝐴 ⊆ On → ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 → Smo 𝐺 ) ) |
| 215 | 191 188 214 | sylc | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ 𝐴 ∈ On ) → Smo 𝐺 ) |
| 216 | 215 | adantlr | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ∧ 𝐴 ∈ On ) → Smo 𝐺 ) |
| 217 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑤 ) ) | |
| 218 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 219 | 217 218 | sseq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑔 ‘ 𝑥 ) ⊆ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 220 | ssun1 | ⊢ ( 𝑔 ‘ 𝑥 ) ⊆ ( ( 𝑔 ‘ 𝑥 ) ∪ ∪ 𝑦 ∈ 𝑥 suc ( recs ( 𝐹 ) ‘ 𝑦 ) ) | |
| 221 | 220 67 | sseqtrrid | ⊢ ( 𝑥 ∈ ( cf ‘ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ⊆ ( 𝐺 ‘ 𝑥 ) ) |
| 222 | 219 221 | vtoclga | ⊢ ( 𝑤 ∈ ( cf ‘ 𝐴 ) → ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝐺 ‘ 𝑤 ) ) |
| 223 | sstr | ⊢ ( ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝐺 ‘ 𝑤 ) ) → 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) | |
| 224 | 223 | expcom | ⊢ ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝐺 ‘ 𝑤 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 225 | 222 224 | syl | ⊢ ( 𝑤 ∈ ( cf ‘ 𝐴 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 226 | 225 | reximia | ⊢ ( ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) |
| 227 | 226 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) |
| 228 | 227 | ad2antlr | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ∧ 𝐴 ∈ On ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) |
| 229 | fnex | ⊢ ( ( 𝐺 Fn ( cf ‘ 𝐴 ) ∧ ( cf ‘ 𝐴 ) ∈ On ) → 𝐺 ∈ V ) | |
| 230 | 185 4 229 | mp2an | ⊢ 𝐺 ∈ V |
| 231 | feq1 | ⊢ ( 𝑓 = 𝐺 → ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ↔ 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) ) | |
| 232 | smoeq | ⊢ ( 𝑓 = 𝐺 → ( Smo 𝑓 ↔ Smo 𝐺 ) ) | |
| 233 | fveq1 | ⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 234 | 233 | sseq2d | ⊢ ( 𝑓 = 𝐺 → ( 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 235 | 234 | rexbidv | ⊢ ( 𝑓 = 𝐺 → ( ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 236 | 235 | ralbidv | ⊢ ( 𝑓 = 𝐺 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) |
| 237 | 231 232 236 | 3anbi123d | ⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ↔ ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝐺 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 238 | 230 237 | spcev | ⊢ ( ( 𝐺 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝐺 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝐺 ‘ 𝑤 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 239 | 189 216 228 238 | syl3anc | ⊢ ( ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ∧ 𝐴 ∈ On ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 240 | 239 | expcom | ⊢ ( 𝐴 ∈ On → ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 241 | 240 | exlimdv | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 242 | 3 241 | mpd | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |