This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| Assertion | reximia | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | imdistani | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 3 | 2 | reximi2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |