This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is always a map from ( cfA ) to A (this is a stronger condition than the definition, which only presupposes a map from some y ~( cfA ) . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cff1 | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) | |
| 2 | cardon | ⊢ ( card ‘ 𝑦 ) ∈ On | |
| 3 | eleq1 | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑥 ∈ On ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑥 ∈ On ) |
| 7 | 6 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ⊆ On |
| 8 | cflem | ⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) | |
| 9 | abn0 | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝐴 ∈ On → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ) |
| 11 | onint | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ⊆ On ∧ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) | |
| 12 | 7 10 11 | sylancr | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 13 | 1 12 | eqeltrd | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 14 | fvex | ⊢ ( cf ‘ 𝐴 ) ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( 𝑥 = ( card ‘ 𝑦 ) ↔ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ) | |
| 16 | 15 | anbi1d | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ↔ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) ) |
| 17 | 16 | exbidv | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) ) |
| 18 | 14 17 | elab | ⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 19 | 13 18 | sylib | ⊢ ( 𝐴 ∈ On → ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 20 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) | |
| 21 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 22 | sstr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑦 ⊆ On ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ∈ On ) → 𝑦 ⊆ On ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ On ) |
| 25 | 24 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑦 ⊆ On ) |
| 26 | vex | ⊢ 𝑦 ∈ V | |
| 27 | onssnum | ⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ⊆ On ) → 𝑦 ∈ dom card ) | |
| 28 | 26 27 | mpan | ⊢ ( 𝑦 ⊆ On → 𝑦 ∈ dom card ) |
| 29 | cardid2 | ⊢ ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 ) | |
| 30 | 28 29 | syl | ⊢ ( 𝑦 ⊆ On → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
| 31 | 30 | adantl | ⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
| 32 | breq1 | ⊢ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) → ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ( card ‘ 𝑦 ) ≈ 𝑦 ) ) | |
| 33 | 32 | adantr | ⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ( card ‘ 𝑦 ) ≈ 𝑦 ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( cf ‘ 𝐴 ) ≈ 𝑦 ) |
| 35 | bren | ⊢ ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) | |
| 36 | 34 35 | sylib | ⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) |
| 37 | 20 25 36 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) |
| 38 | f1of1 | ⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ) | |
| 39 | f1ss | ⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) | |
| 40 | 39 | ancoms | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 41 | 38 40 | sylan2 | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 42 | 41 | adantlr | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 43 | 42 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 44 | f1ofo | ⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ) | |
| 45 | foelrn | ⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ∧ 𝑠 ∈ 𝑦 ) → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑠 = ( 𝑓 ‘ 𝑤 ) ) | |
| 46 | sseq2 | ⊢ ( 𝑠 = ( 𝑓 ‘ 𝑤 ) → ( 𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) | |
| 47 | 46 | biimpcd | ⊢ ( 𝑧 ⊆ 𝑠 → ( 𝑠 = ( 𝑓 ‘ 𝑤 ) → 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 48 | 47 | reximdv | ⊢ ( 𝑧 ⊆ 𝑠 → ( ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑠 = ( 𝑓 ‘ 𝑤 ) → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 49 | 45 48 | syl5com | ⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ∧ 𝑠 ∈ 𝑦 ) → ( 𝑧 ⊆ 𝑠 → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 50 | 49 | rexlimdva | ⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 → ( ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 51 | 50 | ralimdv | ⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 52 | 44 51 | syl | ⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 53 | 52 | impcom | ⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 54 | 53 | adantll | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 55 | 54 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 56 | 43 55 | jca | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 57 | 56 | 3expia | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 58 | 57 | eximdv | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 59 | 37 58 | mpd | ⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 60 | 59 | expl | ⊢ ( 𝐴 ∈ On → ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 61 | 60 | exlimdv | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 62 | 19 61 | mpd | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |