This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cfsmo . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cfsmolem.2 | |- F = ( z e. _V |-> ( ( g ` dom z ) u. U_ t e. dom z suc ( z ` t ) ) ) |
|
| cfsmolem.3 | |- G = ( recs ( F ) |` ( cf ` A ) ) |
||
| Assertion | cfsmolem | |- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfsmolem.2 | |- F = ( z e. _V |-> ( ( g ` dom z ) u. U_ t e. dom z suc ( z ` t ) ) ) |
|
| 2 | cfsmolem.3 | |- G = ( recs ( F ) |` ( cf ` A ) ) |
|
| 3 | cff1 | |- ( A e. On -> E. g ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) ) |
|
| 4 | cfon | |- ( cf ` A ) e. On |
|
| 5 | 4 | oneli | |- ( x e. ( cf ` A ) -> x e. On ) |
| 6 | 5 | 3ad2ant3 | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> x e. On ) |
| 7 | eleq1w | |- ( x = y -> ( x e. ( cf ` A ) <-> y e. ( cf ` A ) ) ) |
|
| 8 | 7 | 3anbi3d | |- ( x = y -> ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) <-> ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) ) ) |
| 9 | fveq2 | |- ( x = y -> ( G ` x ) = ( G ` y ) ) |
|
| 10 | 9 | eleq1d | |- ( x = y -> ( ( G ` x ) e. A <-> ( G ` y ) e. A ) ) |
| 11 | 8 10 | imbi12d | |- ( x = y -> ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( G ` x ) e. A ) <-> ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) ) ) |
| 12 | simpl1 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> g : ( cf ` A ) -1-1-> A ) |
|
| 13 | simpl2 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> A e. On ) |
|
| 14 | ontr1 | |- ( ( cf ` A ) e. On -> ( ( y e. x /\ x e. ( cf ` A ) ) -> y e. ( cf ` A ) ) ) |
|
| 15 | 4 14 | ax-mp | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> y e. ( cf ` A ) ) |
| 16 | 15 | ancoms | |- ( ( x e. ( cf ` A ) /\ y e. x ) -> y e. ( cf ` A ) ) |
| 17 | 16 | 3ad2antl3 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> y e. ( cf ` A ) ) |
| 18 | pm2.27 | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) -> ( G ` y ) e. A ) ) |
|
| 19 | 12 13 17 18 | syl3anc | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) -> ( G ` y ) e. A ) ) |
| 20 | 19 | ralimdva | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( A. y e. x ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) -> A. y e. x ( G ` y ) e. A ) ) |
| 21 | 2 | fveq1i | |- ( G ` x ) = ( ( recs ( F ) |` ( cf ` A ) ) ` x ) |
| 22 | fvres | |- ( x e. ( cf ` A ) -> ( ( recs ( F ) |` ( cf ` A ) ) ` x ) = ( recs ( F ) ` x ) ) |
|
| 23 | 21 22 | eqtrid | |- ( x e. ( cf ` A ) -> ( G ` x ) = ( recs ( F ) ` x ) ) |
| 24 | recsval | |- ( x e. On -> ( recs ( F ) ` x ) = ( F ` ( recs ( F ) |` x ) ) ) |
|
| 25 | recsfnon | |- recs ( F ) Fn On |
|
| 26 | fnfun | |- ( recs ( F ) Fn On -> Fun recs ( F ) ) |
|
| 27 | 25 26 | ax-mp | |- Fun recs ( F ) |
| 28 | vex | |- x e. _V |
|
| 29 | resfunexg | |- ( ( Fun recs ( F ) /\ x e. _V ) -> ( recs ( F ) |` x ) e. _V ) |
|
| 30 | 27 28 29 | mp2an | |- ( recs ( F ) |` x ) e. _V |
| 31 | dmeq | |- ( z = ( recs ( F ) |` x ) -> dom z = dom ( recs ( F ) |` x ) ) |
|
| 32 | 31 | fveq2d | |- ( z = ( recs ( F ) |` x ) -> ( g ` dom z ) = ( g ` dom ( recs ( F ) |` x ) ) ) |
| 33 | fveq1 | |- ( z = ( recs ( F ) |` x ) -> ( z ` t ) = ( ( recs ( F ) |` x ) ` t ) ) |
|
| 34 | suceq | |- ( ( z ` t ) = ( ( recs ( F ) |` x ) ` t ) -> suc ( z ` t ) = suc ( ( recs ( F ) |` x ) ` t ) ) |
|
| 35 | 33 34 | syl | |- ( z = ( recs ( F ) |` x ) -> suc ( z ` t ) = suc ( ( recs ( F ) |` x ) ` t ) ) |
| 36 | 31 35 | iuneq12d | |- ( z = ( recs ( F ) |` x ) -> U_ t e. dom z suc ( z ` t ) = U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) |
| 37 | 32 36 | uneq12d | |- ( z = ( recs ( F ) |` x ) -> ( ( g ` dom z ) u. U_ t e. dom z suc ( z ` t ) ) = ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) ) |
| 38 | fvex | |- ( g ` dom ( recs ( F ) |` x ) ) e. _V |
|
| 39 | 30 | dmex | |- dom ( recs ( F ) |` x ) e. _V |
| 40 | fvex | |- ( ( recs ( F ) |` x ) ` t ) e. _V |
|
| 41 | 40 | sucex | |- suc ( ( recs ( F ) |` x ) ` t ) e. _V |
| 42 | 39 41 | iunex | |- U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) e. _V |
| 43 | 38 42 | unex | |- ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) e. _V |
| 44 | 37 1 43 | fvmpt | |- ( ( recs ( F ) |` x ) e. _V -> ( F ` ( recs ( F ) |` x ) ) = ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) ) |
| 45 | 30 44 | ax-mp | |- ( F ` ( recs ( F ) |` x ) ) = ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) |
| 46 | 24 45 | eqtrdi | |- ( x e. On -> ( recs ( F ) ` x ) = ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) ) |
| 47 | onss | |- ( x e. On -> x C_ On ) |
|
| 48 | fnssres | |- ( ( recs ( F ) Fn On /\ x C_ On ) -> ( recs ( F ) |` x ) Fn x ) |
|
| 49 | 25 47 48 | sylancr | |- ( x e. On -> ( recs ( F ) |` x ) Fn x ) |
| 50 | fndm | |- ( ( recs ( F ) |` x ) Fn x -> dom ( recs ( F ) |` x ) = x ) |
|
| 51 | fveq2 | |- ( dom ( recs ( F ) |` x ) = x -> ( g ` dom ( recs ( F ) |` x ) ) = ( g ` x ) ) |
|
| 52 | iuneq1 | |- ( dom ( recs ( F ) |` x ) = x -> U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) = U_ t e. x suc ( ( recs ( F ) |` x ) ` t ) ) |
|
| 53 | fvres | |- ( t e. x -> ( ( recs ( F ) |` x ) ` t ) = ( recs ( F ) ` t ) ) |
|
| 54 | suceq | |- ( ( ( recs ( F ) |` x ) ` t ) = ( recs ( F ) ` t ) -> suc ( ( recs ( F ) |` x ) ` t ) = suc ( recs ( F ) ` t ) ) |
|
| 55 | 53 54 | syl | |- ( t e. x -> suc ( ( recs ( F ) |` x ) ` t ) = suc ( recs ( F ) ` t ) ) |
| 56 | 55 | iuneq2i | |- U_ t e. x suc ( ( recs ( F ) |` x ) ` t ) = U_ t e. x suc ( recs ( F ) ` t ) |
| 57 | fveq2 | |- ( y = t -> ( recs ( F ) ` y ) = ( recs ( F ) ` t ) ) |
|
| 58 | suceq | |- ( ( recs ( F ) ` y ) = ( recs ( F ) ` t ) -> suc ( recs ( F ) ` y ) = suc ( recs ( F ) ` t ) ) |
|
| 59 | 57 58 | syl | |- ( y = t -> suc ( recs ( F ) ` y ) = suc ( recs ( F ) ` t ) ) |
| 60 | 59 | cbviunv | |- U_ y e. x suc ( recs ( F ) ` y ) = U_ t e. x suc ( recs ( F ) ` t ) |
| 61 | 56 60 | eqtr4i | |- U_ t e. x suc ( ( recs ( F ) |` x ) ` t ) = U_ y e. x suc ( recs ( F ) ` y ) |
| 62 | 52 61 | eqtrdi | |- ( dom ( recs ( F ) |` x ) = x -> U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) = U_ y e. x suc ( recs ( F ) ` y ) ) |
| 63 | 51 62 | uneq12d | |- ( dom ( recs ( F ) |` x ) = x -> ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 64 | 49 50 63 | 3syl | |- ( x e. On -> ( ( g ` dom ( recs ( F ) |` x ) ) u. U_ t e. dom ( recs ( F ) |` x ) suc ( ( recs ( F ) |` x ) ` t ) ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 65 | 46 64 | eqtrd | |- ( x e. On -> ( recs ( F ) ` x ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 66 | 5 65 | syl | |- ( x e. ( cf ` A ) -> ( recs ( F ) ` x ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 67 | 23 66 | eqtrd | |- ( x e. ( cf ` A ) -> ( G ` x ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 68 | 67 | 3ad2ant2 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( G ` x ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 69 | eloni | |- ( A e. On -> Ord A ) |
|
| 70 | 69 | adantl | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> Ord A ) |
| 71 | 70 | 3ad2ant1 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> Ord A ) |
| 72 | f1f | |- ( g : ( cf ` A ) -1-1-> A -> g : ( cf ` A ) --> A ) |
|
| 73 | 72 | ffvelcdmda | |- ( ( g : ( cf ` A ) -1-1-> A /\ x e. ( cf ` A ) ) -> ( g ` x ) e. A ) |
| 74 | 73 | adantlr | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) ) -> ( g ` x ) e. A ) |
| 75 | 74 | 3adant3 | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( g ` x ) e. A ) |
| 76 | 2 | fveq1i | |- ( G ` y ) = ( ( recs ( F ) |` ( cf ` A ) ) ` y ) |
| 77 | 15 | fvresd | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( ( recs ( F ) |` ( cf ` A ) ) ` y ) = ( recs ( F ) ` y ) ) |
| 78 | 76 77 | eqtrid | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( G ` y ) = ( recs ( F ) ` y ) ) |
| 79 | 78 | adantrl | |- ( ( y e. x /\ ( A e. On /\ x e. ( cf ` A ) ) ) -> ( G ` y ) = ( recs ( F ) ` y ) ) |
| 80 | 79 | ancoms | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( G ` y ) = ( recs ( F ) ` y ) ) |
| 81 | 80 | eleq1d | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( G ` y ) e. A <-> ( recs ( F ) ` y ) e. A ) ) |
| 82 | ordsucss | |- ( Ord A -> ( ( recs ( F ) ` y ) e. A -> suc ( recs ( F ) ` y ) C_ A ) ) |
|
| 83 | 69 82 | syl | |- ( A e. On -> ( ( recs ( F ) ` y ) e. A -> suc ( recs ( F ) ` y ) C_ A ) ) |
| 84 | 83 | ad2antrr | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( recs ( F ) ` y ) e. A -> suc ( recs ( F ) ` y ) C_ A ) ) |
| 85 | 81 84 | sylbid | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( G ` y ) e. A -> suc ( recs ( F ) ` y ) C_ A ) ) |
| 86 | 85 | ralimdva | |- ( ( A e. On /\ x e. ( cf ` A ) ) -> ( A. y e. x ( G ` y ) e. A -> A. y e. x suc ( recs ( F ) ` y ) C_ A ) ) |
| 87 | iunss | |- ( U_ y e. x suc ( recs ( F ) ` y ) C_ A <-> A. y e. x suc ( recs ( F ) ` y ) C_ A ) |
|
| 88 | 86 87 | imbitrrdi | |- ( ( A e. On /\ x e. ( cf ` A ) ) -> ( A. y e. x ( G ` y ) e. A -> U_ y e. x suc ( recs ( F ) ` y ) C_ A ) ) |
| 89 | 88 | 3impia | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> U_ y e. x suc ( recs ( F ) ` y ) C_ A ) |
| 90 | onelon | |- ( ( A e. On /\ ( recs ( F ) ` y ) e. A ) -> ( recs ( F ) ` y ) e. On ) |
|
| 91 | 90 | ex | |- ( A e. On -> ( ( recs ( F ) ` y ) e. A -> ( recs ( F ) ` y ) e. On ) ) |
| 92 | 91 | ad2antrr | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( recs ( F ) ` y ) e. A -> ( recs ( F ) ` y ) e. On ) ) |
| 93 | 81 92 | sylbid | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( G ` y ) e. A -> ( recs ( F ) ` y ) e. On ) ) |
| 94 | onsuc | |- ( ( recs ( F ) ` y ) e. On -> suc ( recs ( F ) ` y ) e. On ) |
|
| 95 | 93 94 | syl6 | |- ( ( ( A e. On /\ x e. ( cf ` A ) ) /\ y e. x ) -> ( ( G ` y ) e. A -> suc ( recs ( F ) ` y ) e. On ) ) |
| 96 | 95 | ralimdva | |- ( ( A e. On /\ x e. ( cf ` A ) ) -> ( A. y e. x ( G ` y ) e. A -> A. y e. x suc ( recs ( F ) ` y ) e. On ) ) |
| 97 | 96 | 3impia | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> A. y e. x suc ( recs ( F ) ` y ) e. On ) |
| 98 | iunon | |- ( ( x e. _V /\ A. y e. x suc ( recs ( F ) ` y ) e. On ) -> U_ y e. x suc ( recs ( F ) ` y ) e. On ) |
|
| 99 | 28 97 98 | sylancr | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> U_ y e. x suc ( recs ( F ) ` y ) e. On ) |
| 100 | simp1 | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> A e. On ) |
|
| 101 | onsseleq | |- ( ( U_ y e. x suc ( recs ( F ) ` y ) e. On /\ A e. On ) -> ( U_ y e. x suc ( recs ( F ) ` y ) C_ A <-> ( U_ y e. x suc ( recs ( F ) ` y ) e. A \/ U_ y e. x suc ( recs ( F ) ` y ) = A ) ) ) |
|
| 102 | 99 100 101 | syl2anc | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( U_ y e. x suc ( recs ( F ) ` y ) C_ A <-> ( U_ y e. x suc ( recs ( F ) ` y ) e. A \/ U_ y e. x suc ( recs ( F ) ` y ) = A ) ) ) |
| 103 | idd | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( U_ y e. x suc ( recs ( F ) ` y ) e. A -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) |
|
| 104 | simpll | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> x e. ( cf ` A ) ) |
|
| 105 | simprr | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> A e. On ) |
|
| 106 | 5 | ad2antrr | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> x e. On ) |
| 107 | 5 49 | syl | |- ( x e. ( cf ` A ) -> ( recs ( F ) |` x ) Fn x ) |
| 108 | 107 | adantr | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( recs ( F ) |` x ) Fn x ) |
| 109 | 78 | ancoms | |- ( ( x e. ( cf ` A ) /\ y e. x ) -> ( G ` y ) = ( recs ( F ) ` y ) ) |
| 110 | fvres | |- ( y e. x -> ( ( recs ( F ) |` x ) ` y ) = ( recs ( F ) ` y ) ) |
|
| 111 | 110 | adantl | |- ( ( x e. ( cf ` A ) /\ y e. x ) -> ( ( recs ( F ) |` x ) ` y ) = ( recs ( F ) ` y ) ) |
| 112 | 109 111 | eqtr4d | |- ( ( x e. ( cf ` A ) /\ y e. x ) -> ( G ` y ) = ( ( recs ( F ) |` x ) ` y ) ) |
| 113 | 112 | eleq1d | |- ( ( x e. ( cf ` A ) /\ y e. x ) -> ( ( G ` y ) e. A <-> ( ( recs ( F ) |` x ) ` y ) e. A ) ) |
| 114 | 113 | ralbidva | |- ( x e. ( cf ` A ) -> ( A. y e. x ( G ` y ) e. A <-> A. y e. x ( ( recs ( F ) |` x ) ` y ) e. A ) ) |
| 115 | 114 | biimpa | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> A. y e. x ( ( recs ( F ) |` x ) ` y ) e. A ) |
| 116 | ffnfv | |- ( ( recs ( F ) |` x ) : x --> A <-> ( ( recs ( F ) |` x ) Fn x /\ A. y e. x ( ( recs ( F ) |` x ) ` y ) e. A ) ) |
|
| 117 | 108 115 116 | sylanbrc | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( recs ( F ) |` x ) : x --> A ) |
| 118 | eleq2 | |- ( U_ y e. x suc ( recs ( F ) ` y ) = A -> ( t e. U_ y e. x suc ( recs ( F ) ` y ) <-> t e. A ) ) |
|
| 119 | 118 | biimpar | |- ( ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ t e. A ) -> t e. U_ y e. x suc ( recs ( F ) ` y ) ) |
| 120 | 119 | adantrl | |- ( ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ ( A e. On /\ t e. A ) ) -> t e. U_ y e. x suc ( recs ( F ) ` y ) ) |
| 121 | 120 | 3adant1 | |- ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A /\ ( A e. On /\ t e. A ) ) -> t e. U_ y e. x suc ( recs ( F ) ` y ) ) |
| 122 | onelon | |- ( ( A e. On /\ t e. A ) -> t e. On ) |
|
| 123 | 110 | adantl | |- ( ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) -> ( ( recs ( F ) |` x ) ` y ) = ( recs ( F ) ` y ) ) |
| 124 | ffvelcdm | |- ( ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) -> ( ( recs ( F ) |` x ) ` y ) e. A ) |
|
| 125 | 123 124 | eqeltrrd | |- ( ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) -> ( recs ( F ) ` y ) e. A ) |
| 126 | 125 90 | sylan2 | |- ( ( A e. On /\ ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) ) -> ( recs ( F ) ` y ) e. On ) |
| 127 | 126 | adantlr | |- ( ( ( A e. On /\ t e. A ) /\ ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) ) -> ( recs ( F ) ` y ) e. On ) |
| 128 | onsssuc | |- ( ( t e. On /\ ( recs ( F ) ` y ) e. On ) -> ( t C_ ( recs ( F ) ` y ) <-> t e. suc ( recs ( F ) ` y ) ) ) |
|
| 129 | 122 127 128 | syl2an2r | |- ( ( ( A e. On /\ t e. A ) /\ ( ( recs ( F ) |` x ) : x --> A /\ y e. x ) ) -> ( t C_ ( recs ( F ) ` y ) <-> t e. suc ( recs ( F ) ` y ) ) ) |
| 130 | 129 | anassrs | |- ( ( ( ( A e. On /\ t e. A ) /\ ( recs ( F ) |` x ) : x --> A ) /\ y e. x ) -> ( t C_ ( recs ( F ) ` y ) <-> t e. suc ( recs ( F ) ` y ) ) ) |
| 131 | 130 | rexbidva | |- ( ( ( A e. On /\ t e. A ) /\ ( recs ( F ) |` x ) : x --> A ) -> ( E. y e. x t C_ ( recs ( F ) ` y ) <-> E. y e. x t e. suc ( recs ( F ) ` y ) ) ) |
| 132 | eliun | |- ( t e. U_ y e. x suc ( recs ( F ) ` y ) <-> E. y e. x t e. suc ( recs ( F ) ` y ) ) |
|
| 133 | 131 132 | bitr4di | |- ( ( ( A e. On /\ t e. A ) /\ ( recs ( F ) |` x ) : x --> A ) -> ( E. y e. x t C_ ( recs ( F ) ` y ) <-> t e. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 134 | 133 | ancoms | |- ( ( ( recs ( F ) |` x ) : x --> A /\ ( A e. On /\ t e. A ) ) -> ( E. y e. x t C_ ( recs ( F ) ` y ) <-> t e. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 135 | 134 | 3adant2 | |- ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A /\ ( A e. On /\ t e. A ) ) -> ( E. y e. x t C_ ( recs ( F ) ` y ) <-> t e. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 136 | 121 135 | mpbird | |- ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A /\ ( A e. On /\ t e. A ) ) -> E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 137 | 136 | 3expa | |- ( ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A ) /\ ( A e. On /\ t e. A ) ) -> E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 138 | 137 | anassrs | |- ( ( ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A ) /\ A e. On ) /\ t e. A ) -> E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 139 | 138 | ralrimiva | |- ( ( ( ( recs ( F ) |` x ) : x --> A /\ U_ y e. x suc ( recs ( F ) ` y ) = A ) /\ A e. On ) -> A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 140 | 139 | expl | |- ( ( recs ( F ) |` x ) : x --> A -> ( ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) -> A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) ) |
| 141 | 117 140 | syl | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) -> A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) ) |
| 142 | 141 | imp | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 143 | feq1 | |- ( f = ( recs ( F ) |` x ) -> ( f : x --> A <-> ( recs ( F ) |` x ) : x --> A ) ) |
|
| 144 | fveq1 | |- ( f = ( recs ( F ) |` x ) -> ( f ` y ) = ( ( recs ( F ) |` x ) ` y ) ) |
|
| 145 | 144 | sseq2d | |- ( f = ( recs ( F ) |` x ) -> ( t C_ ( f ` y ) <-> t C_ ( ( recs ( F ) |` x ) ` y ) ) ) |
| 146 | 145 | rexbidv | |- ( f = ( recs ( F ) |` x ) -> ( E. y e. x t C_ ( f ` y ) <-> E. y e. x t C_ ( ( recs ( F ) |` x ) ` y ) ) ) |
| 147 | 110 | sseq2d | |- ( y e. x -> ( t C_ ( ( recs ( F ) |` x ) ` y ) <-> t C_ ( recs ( F ) ` y ) ) ) |
| 148 | 147 | rexbiia | |- ( E. y e. x t C_ ( ( recs ( F ) |` x ) ` y ) <-> E. y e. x t C_ ( recs ( F ) ` y ) ) |
| 149 | 146 148 | bitrdi | |- ( f = ( recs ( F ) |` x ) -> ( E. y e. x t C_ ( f ` y ) <-> E. y e. x t C_ ( recs ( F ) ` y ) ) ) |
| 150 | 149 | ralbidv | |- ( f = ( recs ( F ) |` x ) -> ( A. t e. A E. y e. x t C_ ( f ` y ) <-> A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) ) |
| 151 | 143 150 | anbi12d | |- ( f = ( recs ( F ) |` x ) -> ( ( f : x --> A /\ A. t e. A E. y e. x t C_ ( f ` y ) ) <-> ( ( recs ( F ) |` x ) : x --> A /\ A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) ) ) |
| 152 | 30 151 | spcev | |- ( ( ( recs ( F ) |` x ) : x --> A /\ A. t e. A E. y e. x t C_ ( recs ( F ) ` y ) ) -> E. f ( f : x --> A /\ A. t e. A E. y e. x t C_ ( f ` y ) ) ) |
| 153 | 117 142 152 | syl2an2r | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> E. f ( f : x --> A /\ A. t e. A E. y e. x t C_ ( f ` y ) ) ) |
| 154 | cfflb | |- ( ( A e. On /\ x e. On ) -> ( E. f ( f : x --> A /\ A. t e. A E. y e. x t C_ ( f ` y ) ) -> ( cf ` A ) C_ x ) ) |
|
| 155 | 154 | imp | |- ( ( ( A e. On /\ x e. On ) /\ E. f ( f : x --> A /\ A. t e. A E. y e. x t C_ ( f ` y ) ) ) -> ( cf ` A ) C_ x ) |
| 156 | 105 106 153 155 | syl21anc | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> ( cf ` A ) C_ x ) |
| 157 | ontri1 | |- ( ( ( cf ` A ) e. On /\ x e. On ) -> ( ( cf ` A ) C_ x <-> -. x e. ( cf ` A ) ) ) |
|
| 158 | 4 5 157 | sylancr | |- ( x e. ( cf ` A ) -> ( ( cf ` A ) C_ x <-> -. x e. ( cf ` A ) ) ) |
| 159 | 158 | ad2antrr | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> ( ( cf ` A ) C_ x <-> -. x e. ( cf ` A ) ) ) |
| 160 | 156 159 | mpbid | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> -. x e. ( cf ` A ) ) |
| 161 | 104 160 | pm2.21dd | |- ( ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) /\ ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) ) -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) |
| 162 | 161 | ex | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( ( U_ y e. x suc ( recs ( F ) ` y ) = A /\ A e. On ) -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) |
| 163 | 162 | expcomd | |- ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( A e. On -> ( U_ y e. x suc ( recs ( F ) ` y ) = A -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) ) |
| 164 | 163 | com12 | |- ( A e. On -> ( ( x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( U_ y e. x suc ( recs ( F ) ` y ) = A -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) ) |
| 165 | 164 | 3impib | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( U_ y e. x suc ( recs ( F ) ` y ) = A -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) |
| 166 | 103 165 | jaod | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( ( U_ y e. x suc ( recs ( F ) ` y ) e. A \/ U_ y e. x suc ( recs ( F ) ` y ) = A ) -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) |
| 167 | 102 166 | sylbid | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( U_ y e. x suc ( recs ( F ) ` y ) C_ A -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) ) |
| 168 | 89 167 | mpd | |- ( ( A e. On /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) |
| 169 | 168 | 3adant1l | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> U_ y e. x suc ( recs ( F ) ` y ) e. A ) |
| 170 | ordunel | |- ( ( Ord A /\ ( g ` x ) e. A /\ U_ y e. x suc ( recs ( F ) ` y ) e. A ) -> ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) e. A ) |
|
| 171 | 71 75 169 170 | syl3anc | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) e. A ) |
| 172 | 68 171 | eqeltrd | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) /\ A. y e. x ( G ` y ) e. A ) -> ( G ` x ) e. A ) |
| 173 | 172 | 3expia | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) /\ x e. ( cf ` A ) ) -> ( A. y e. x ( G ` y ) e. A -> ( G ` x ) e. A ) ) |
| 174 | 173 | 3impa | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( A. y e. x ( G ` y ) e. A -> ( G ` x ) e. A ) ) |
| 175 | 20 174 | syldc | |- ( A. y e. x ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) -> ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( G ` x ) e. A ) ) |
| 176 | 175 | a1i | |- ( x e. On -> ( A. y e. x ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ y e. ( cf ` A ) ) -> ( G ` y ) e. A ) -> ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( G ` x ) e. A ) ) ) |
| 177 | 11 176 | tfis2 | |- ( x e. On -> ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( G ` x ) e. A ) ) |
| 178 | 6 177 | mpcom | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On /\ x e. ( cf ` A ) ) -> ( G ` x ) e. A ) |
| 179 | 178 | 3expia | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> ( x e. ( cf ` A ) -> ( G ` x ) e. A ) ) |
| 180 | 179 | ralrimiv | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> A. x e. ( cf ` A ) ( G ` x ) e. A ) |
| 181 | 4 | onssi | |- ( cf ` A ) C_ On |
| 182 | fnssres | |- ( ( recs ( F ) Fn On /\ ( cf ` A ) C_ On ) -> ( recs ( F ) |` ( cf ` A ) ) Fn ( cf ` A ) ) |
|
| 183 | 2 | fneq1i | |- ( G Fn ( cf ` A ) <-> ( recs ( F ) |` ( cf ` A ) ) Fn ( cf ` A ) ) |
| 184 | 182 183 | sylibr | |- ( ( recs ( F ) Fn On /\ ( cf ` A ) C_ On ) -> G Fn ( cf ` A ) ) |
| 185 | 25 181 184 | mp2an | |- G Fn ( cf ` A ) |
| 186 | ffnfv | |- ( G : ( cf ` A ) --> A <-> ( G Fn ( cf ` A ) /\ A. x e. ( cf ` A ) ( G ` x ) e. A ) ) |
|
| 187 | 185 186 | mpbiran | |- ( G : ( cf ` A ) --> A <-> A. x e. ( cf ` A ) ( G ` x ) e. A ) |
| 188 | 180 187 | sylibr | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> G : ( cf ` A ) --> A ) |
| 189 | 188 | adantlr | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) /\ A e. On ) -> G : ( cf ` A ) --> A ) |
| 190 | onss | |- ( A e. On -> A C_ On ) |
|
| 191 | 190 | adantl | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> A C_ On ) |
| 192 | 4 | onordi | |- Ord ( cf ` A ) |
| 193 | fvex | |- ( recs ( F ) ` y ) e. _V |
|
| 194 | 193 | sucid | |- ( recs ( F ) ` y ) e. suc ( recs ( F ) ` y ) |
| 195 | fveq2 | |- ( t = y -> ( recs ( F ) ` t ) = ( recs ( F ) ` y ) ) |
|
| 196 | suceq | |- ( ( recs ( F ) ` t ) = ( recs ( F ) ` y ) -> suc ( recs ( F ) ` t ) = suc ( recs ( F ) ` y ) ) |
|
| 197 | 195 196 | syl | |- ( t = y -> suc ( recs ( F ) ` t ) = suc ( recs ( F ) ` y ) ) |
| 198 | 197 | eliuni | |- ( ( y e. x /\ ( recs ( F ) ` y ) e. suc ( recs ( F ) ` y ) ) -> ( recs ( F ) ` y ) e. U_ t e. x suc ( recs ( F ) ` t ) ) |
| 199 | 198 60 | eleqtrrdi | |- ( ( y e. x /\ ( recs ( F ) ` y ) e. suc ( recs ( F ) ` y ) ) -> ( recs ( F ) ` y ) e. U_ y e. x suc ( recs ( F ) ` y ) ) |
| 200 | 194 199 | mpan2 | |- ( y e. x -> ( recs ( F ) ` y ) e. U_ y e. x suc ( recs ( F ) ` y ) ) |
| 201 | elun2 | |- ( ( recs ( F ) ` y ) e. U_ y e. x suc ( recs ( F ) ` y ) -> ( recs ( F ) ` y ) e. ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
|
| 202 | 200 201 | syl | |- ( y e. x -> ( recs ( F ) ` y ) e. ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 203 | 202 | adantr | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( recs ( F ) ` y ) e. ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 204 | 5 | adantl | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> x e. On ) |
| 205 | 204 65 | syl | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( recs ( F ) ` x ) = ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) ) |
| 206 | 203 205 | eleqtrrd | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( recs ( F ) ` y ) e. ( recs ( F ) ` x ) ) |
| 207 | 23 | adantl | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( G ` x ) = ( recs ( F ) ` x ) ) |
| 208 | 206 78 207 | 3eltr4d | |- ( ( y e. x /\ x e. ( cf ` A ) ) -> ( G ` y ) e. ( G ` x ) ) |
| 209 | 208 | expcom | |- ( x e. ( cf ` A ) -> ( y e. x -> ( G ` y ) e. ( G ` x ) ) ) |
| 210 | 209 | ralrimiv | |- ( x e. ( cf ` A ) -> A. y e. x ( G ` y ) e. ( G ` x ) ) |
| 211 | 210 | rgen | |- A. x e. ( cf ` A ) A. y e. x ( G ` y ) e. ( G ` x ) |
| 212 | issmo2 | |- ( G : ( cf ` A ) --> A -> ( ( A C_ On /\ Ord ( cf ` A ) /\ A. x e. ( cf ` A ) A. y e. x ( G ` y ) e. ( G ` x ) ) -> Smo G ) ) |
|
| 213 | 212 | com12 | |- ( ( A C_ On /\ Ord ( cf ` A ) /\ A. x e. ( cf ` A ) A. y e. x ( G ` y ) e. ( G ` x ) ) -> ( G : ( cf ` A ) --> A -> Smo G ) ) |
| 214 | 192 211 213 | mp3an23 | |- ( A C_ On -> ( G : ( cf ` A ) --> A -> Smo G ) ) |
| 215 | 191 188 214 | sylc | |- ( ( g : ( cf ` A ) -1-1-> A /\ A e. On ) -> Smo G ) |
| 216 | 215 | adantlr | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) /\ A e. On ) -> Smo G ) |
| 217 | fveq2 | |- ( x = w -> ( g ` x ) = ( g ` w ) ) |
|
| 218 | fveq2 | |- ( x = w -> ( G ` x ) = ( G ` w ) ) |
|
| 219 | 217 218 | sseq12d | |- ( x = w -> ( ( g ` x ) C_ ( G ` x ) <-> ( g ` w ) C_ ( G ` w ) ) ) |
| 220 | ssun1 | |- ( g ` x ) C_ ( ( g ` x ) u. U_ y e. x suc ( recs ( F ) ` y ) ) |
|
| 221 | 220 67 | sseqtrrid | |- ( x e. ( cf ` A ) -> ( g ` x ) C_ ( G ` x ) ) |
| 222 | 219 221 | vtoclga | |- ( w e. ( cf ` A ) -> ( g ` w ) C_ ( G ` w ) ) |
| 223 | sstr | |- ( ( z C_ ( g ` w ) /\ ( g ` w ) C_ ( G ` w ) ) -> z C_ ( G ` w ) ) |
|
| 224 | 223 | expcom | |- ( ( g ` w ) C_ ( G ` w ) -> ( z C_ ( g ` w ) -> z C_ ( G ` w ) ) ) |
| 225 | 222 224 | syl | |- ( w e. ( cf ` A ) -> ( z C_ ( g ` w ) -> z C_ ( G ` w ) ) ) |
| 226 | 225 | reximia | |- ( E. w e. ( cf ` A ) z C_ ( g ` w ) -> E. w e. ( cf ` A ) z C_ ( G ` w ) ) |
| 227 | 226 | ralimi | |- ( A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) -> A. z e. A E. w e. ( cf ` A ) z C_ ( G ` w ) ) |
| 228 | 227 | ad2antlr | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) /\ A e. On ) -> A. z e. A E. w e. ( cf ` A ) z C_ ( G ` w ) ) |
| 229 | fnex | |- ( ( G Fn ( cf ` A ) /\ ( cf ` A ) e. On ) -> G e. _V ) |
|
| 230 | 185 4 229 | mp2an | |- G e. _V |
| 231 | feq1 | |- ( f = G -> ( f : ( cf ` A ) --> A <-> G : ( cf ` A ) --> A ) ) |
|
| 232 | smoeq | |- ( f = G -> ( Smo f <-> Smo G ) ) |
|
| 233 | fveq1 | |- ( f = G -> ( f ` w ) = ( G ` w ) ) |
|
| 234 | 233 | sseq2d | |- ( f = G -> ( z C_ ( f ` w ) <-> z C_ ( G ` w ) ) ) |
| 235 | 234 | rexbidv | |- ( f = G -> ( E. w e. ( cf ` A ) z C_ ( f ` w ) <-> E. w e. ( cf ` A ) z C_ ( G ` w ) ) ) |
| 236 | 235 | ralbidv | |- ( f = G -> ( A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) <-> A. z e. A E. w e. ( cf ` A ) z C_ ( G ` w ) ) ) |
| 237 | 231 232 236 | 3anbi123d | |- ( f = G -> ( ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) <-> ( G : ( cf ` A ) --> A /\ Smo G /\ A. z e. A E. w e. ( cf ` A ) z C_ ( G ` w ) ) ) ) |
| 238 | 230 237 | spcev | |- ( ( G : ( cf ` A ) --> A /\ Smo G /\ A. z e. A E. w e. ( cf ` A ) z C_ ( G ` w ) ) -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |
| 239 | 189 216 228 238 | syl3anc | |- ( ( ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) /\ A e. On ) -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |
| 240 | 239 | expcom | |- ( A e. On -> ( ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) ) |
| 241 | 240 | exlimdv | |- ( A e. On -> ( E. g ( g : ( cf ` A ) -1-1-> A /\ A. z e. A E. w e. ( cf ` A ) z C_ ( g ` w ) ) -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) ) |
| 242 | 3 241 | mpd | |- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |