This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issmo2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → Smo 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ On ) → 𝐹 : 𝐴 ⟶ On ) | |
| 2 | 1 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐵 ⊆ On → 𝐹 : 𝐴 ⟶ On ) ) |
| 3 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 4 | 3 | feq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ On ↔ 𝐹 : 𝐴 ⟶ On ) ) |
| 5 | 2 4 | sylibrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐵 ⊆ On → 𝐹 : dom 𝐹 ⟶ On ) ) |
| 6 | ordeq | ⊢ ( dom 𝐹 = 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) |
| 8 | 7 | biimprd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( Ord 𝐴 → Ord dom 𝐹 ) ) |
| 9 | 3 | raleqdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 | 9 | biimprd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 11 | 5 8 10 | 3anim123d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 12 | dfsmo2 | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | imbitrrdi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → Smo 𝐹 ) ) |