This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is a subset of On . (Contributed by NM, 11-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onssi.1 | ⊢ 𝐴 ∈ On | |
| Assertion | onssi | ⊢ 𝐴 ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | ⊢ 𝐴 ∈ On | |
| 2 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝐴 ⊆ On |