This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015) Remove DV conditions (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| iuneq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | iuneq12d | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | iuneq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶 ) ) ) |
| 5 | 4 | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) ) |
| 6 | 5 | abbidv | ⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } ) |
| 7 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
| 8 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
| 11 | 10 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |