This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoeq | ⊢ ( 𝐴 = 𝐵 → ( Smo 𝐴 ↔ Smo 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
| 2 | dmeq | ⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) | |
| 3 | 1 2 | feq12d | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 : dom 𝐴 ⟶ On ↔ 𝐵 : dom 𝐵 ⟶ On ) ) |
| 4 | ordeq | ⊢ ( dom 𝐴 = dom 𝐵 → ( Ord dom 𝐴 ↔ Ord dom 𝐵 ) ) | |
| 5 | 2 4 | syl | ⊢ ( 𝐴 = 𝐵 → ( Ord dom 𝐴 ↔ Ord dom 𝐵 ) ) |
| 6 | fveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) | |
| 7 | fveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) | |
| 8 | 6 7 | eleq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 10 | 9 | 2ralbidv | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 11 | 2 | raleqdv | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 13 | 2 | raleqdv | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 14 | 10 12 13 | 3bitrd | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 15 | 3 5 14 | 3anbi123d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) ) |
| 16 | df-smo | ⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) | |
| 17 | df-smo | ⊢ ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) | |
| 18 | 15 16 17 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( Smo 𝐴 ↔ Smo 𝐵 ) ) |