This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | remetdval | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | df-ov | |- ( A D B ) = ( D ` <. A , B >. ) |
|
| 3 | 1 | fveq1i | |- ( D ` <. A , B >. ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) |
| 4 | 2 3 | eqtri | |- ( A D B ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) |
| 5 | opelxpi | |- ( ( A e. RR /\ B e. RR ) -> <. A , B >. e. ( RR X. RR ) ) |
|
| 6 | 5 | fvresd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) = ( ( abs o. - ) ` <. A , B >. ) ) |
| 7 | df-ov | |- ( A ( abs o. - ) B ) = ( ( abs o. - ) ` <. A , B >. ) |
|
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | recn | |- ( B e. RR -> B e. CC ) |
|
| 10 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 11 | 10 | cnmetdval | |- ( ( A e. CC /\ B e. CC ) -> ( A ( abs o. - ) B ) = ( abs ` ( A - B ) ) ) |
| 12 | 8 9 11 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A ( abs o. - ) B ) = ( abs ` ( A - B ) ) ) |
| 13 | 7 12 | eqtr3id | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( A - B ) ) ) |
| 14 | 6 13 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) = ( abs ` ( A - B ) ) ) |
| 15 | 4 14 | eqtrid | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |