This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt0 | |- ( sqrt ` 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | sqrtval | |- ( 0 e. CC -> ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 4 | id | |- ( 0 e. CC -> 0 e. CC ) |
|
| 5 | sqeq0 | |- ( x e. CC -> ( ( x ^ 2 ) = 0 <-> x = 0 ) ) |
|
| 6 | 5 | biimpa | |- ( ( x e. CC /\ ( x ^ 2 ) = 0 ) -> x = 0 ) |
| 7 | 6 | 3ad2antr1 | |- ( ( x e. CC /\ ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> x = 0 ) |
| 8 | 7 | ex | |- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> x = 0 ) ) |
| 9 | sq0i | |- ( x = 0 -> ( x ^ 2 ) = 0 ) |
|
| 10 | 0le0 | |- 0 <_ 0 |
|
| 11 | fveq2 | |- ( x = 0 -> ( Re ` x ) = ( Re ` 0 ) ) |
|
| 12 | re0 | |- ( Re ` 0 ) = 0 |
|
| 13 | 11 12 | eqtrdi | |- ( x = 0 -> ( Re ` x ) = 0 ) |
| 14 | 10 13 | breqtrrid | |- ( x = 0 -> 0 <_ ( Re ` x ) ) |
| 15 | 0re | |- 0 e. RR |
|
| 16 | eleq1 | |- ( x = 0 -> ( x e. RR <-> 0 e. RR ) ) |
|
| 17 | 15 16 | mpbiri | |- ( x = 0 -> x e. RR ) |
| 18 | rennim | |- ( x e. RR -> ( _i x. x ) e/ RR+ ) |
|
| 19 | 17 18 | syl | |- ( x = 0 -> ( _i x. x ) e/ RR+ ) |
| 20 | 9 14 19 | 3jca | |- ( x = 0 -> ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 21 | 8 20 | impbid1 | |- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
| 22 | 21 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
| 23 | 4 22 | riota5 | |- ( 0 e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 ) |
| 24 | 1 23 | ax-mp | |- ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 |
| 25 | 3 24 | eqtri | |- ( sqrt ` 0 ) = 0 |