This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnval.1 | |- X = ( RR ^m I ) |
|
| rrndstprj1.1 | |- M = ( ( abs o. - ) |` ( RR X. RR ) ) |
||
| Assertion | rrndstprj1 | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` A ) M ( G ` A ) ) <_ ( F ( Rn ` I ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | |- X = ( RR ^m I ) |
|
| 2 | rrndstprj1.1 | |- M = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 3 | simpll | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> I e. Fin ) |
|
| 4 | simprl | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> F e. X ) |
|
| 5 | 4 1 | eleqtrdi | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> F e. ( RR ^m I ) ) |
| 6 | elmapi | |- ( F e. ( RR ^m I ) -> F : I --> RR ) |
|
| 7 | 5 6 | syl | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> F : I --> RR ) |
| 8 | 7 | ffvelcdmda | |- ( ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( F ` k ) e. RR ) |
| 9 | simprr | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> G e. X ) |
|
| 10 | 9 1 | eleqtrdi | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> G e. ( RR ^m I ) ) |
| 11 | elmapi | |- ( G e. ( RR ^m I ) -> G : I --> RR ) |
|
| 12 | 10 11 | syl | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> G : I --> RR ) |
| 13 | 12 | ffvelcdmda | |- ( ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( G ` k ) e. RR ) |
| 14 | 8 13 | resubcld | |- ( ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) - ( G ` k ) ) e. RR ) |
| 15 | 14 | resqcld | |- ( ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. RR ) |
| 16 | 14 | sqge0d | |- ( ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> 0 <_ ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 17 | fveq2 | |- ( k = A -> ( F ` k ) = ( F ` A ) ) |
|
| 18 | fveq2 | |- ( k = A -> ( G ` k ) = ( G ` A ) ) |
|
| 19 | 17 18 | oveq12d | |- ( k = A -> ( ( F ` k ) - ( G ` k ) ) = ( ( F ` A ) - ( G ` A ) ) ) |
| 20 | 19 | oveq1d | |- ( k = A -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = ( ( ( F ` A ) - ( G ` A ) ) ^ 2 ) ) |
| 21 | simplr | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> A e. I ) |
|
| 22 | 3 15 16 20 21 | fsumge1 | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( ( F ` A ) - ( G ` A ) ) ^ 2 ) <_ sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 23 | 7 21 | ffvelcdmd | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( F ` A ) e. RR ) |
| 24 | 12 21 | ffvelcdmd | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( G ` A ) e. RR ) |
| 25 | 23 24 | resubcld | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` A ) - ( G ` A ) ) e. RR ) |
| 26 | absresq | |- ( ( ( F ` A ) - ( G ` A ) ) e. RR -> ( ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ^ 2 ) = ( ( ( F ` A ) - ( G ` A ) ) ^ 2 ) ) |
|
| 27 | 25 26 | syl | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ^ 2 ) = ( ( ( F ` A ) - ( G ` A ) ) ^ 2 ) ) |
| 28 | 3 15 | fsumrecl | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. RR ) |
| 29 | 3 15 16 | fsumge0 | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> 0 <_ sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 30 | resqrtth | |- ( ( sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. RR /\ 0 <_ sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) -> ( ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ^ 2 ) = sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ^ 2 ) = sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 32 | 22 27 31 | 3brtr4d | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ^ 2 ) <_ ( ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ^ 2 ) ) |
| 33 | 25 | recnd | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` A ) - ( G ` A ) ) e. CC ) |
| 34 | 33 | abscld | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( abs ` ( ( F ` A ) - ( G ` A ) ) ) e. RR ) |
| 35 | 28 29 | resqrtcld | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) e. RR ) |
| 36 | 33 | absge0d | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ) |
| 37 | 28 29 | sqrtge0d | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 38 | 34 35 36 37 | le2sqd | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( abs ` ( ( F ` A ) - ( G ` A ) ) ) <_ ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) <-> ( ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ^ 2 ) <_ ( ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ^ 2 ) ) ) |
| 39 | 32 38 | mpbird | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( abs ` ( ( F ` A ) - ( G ` A ) ) ) <_ ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 40 | 2 | remetdval | |- ( ( ( F ` A ) e. RR /\ ( G ` A ) e. RR ) -> ( ( F ` A ) M ( G ` A ) ) = ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ) |
| 41 | 23 24 40 | syl2anc | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` A ) M ( G ` A ) ) = ( abs ` ( ( F ` A ) - ( G ` A ) ) ) ) |
| 42 | 1 | rrnmval | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 43 | 42 | 3expb | |- ( ( I e. Fin /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 44 | 43 | adantlr | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 45 | 39 41 44 | 3brtr4d | |- ( ( ( I e. Fin /\ A e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` A ) M ( G ` A ) ) <_ ( F ( Rn ` I ) G ) ) |