This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | |- Z = ( ZZ>= ` M ) |
|
| climshft2.2 | |- ( ph -> M e. ZZ ) |
||
| climrecl.3 | |- ( ph -> F ~~> A ) |
||
| climrecl.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| Assertion | climrecl | |- ( ph -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climshft2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climrecl.3 | |- ( ph -> F ~~> A ) |
|
| 4 | climrecl.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 5 | 1 | uzsup | |- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
| 6 | 2 5 | syl | |- ( ph -> sup ( Z , RR* , < ) = +oo ) |
| 7 | climrel | |- Rel ~~> |
|
| 8 | 7 | brrelex1i | |- ( F ~~> A -> F e. _V ) |
| 9 | 3 8 | syl | |- ( ph -> F e. _V ) |
| 10 | eqid | |- ( k e. Z |-> ( F ` k ) ) = ( k e. Z |-> ( F ` k ) ) |
|
| 11 | 1 10 | climmpt | |- ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
| 12 | 2 9 11 | syl2anc | |- ( ph -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
| 13 | 3 12 | mpbid | |- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~> A ) |
| 14 | 4 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 15 | 14 | fmpttd | |- ( ph -> ( k e. Z |-> ( F ` k ) ) : Z --> CC ) |
| 16 | 1 2 15 | rlimclim | |- ( ph -> ( ( k e. Z |-> ( F ` k ) ) ~~>r A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
| 17 | 13 16 | mpbird | |- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~>r A ) |
| 18 | 6 17 4 | rlimrecl | |- ( ph -> A e. RR ) |