This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sum0 | |- sum_ k e. (/) A = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 2 | 1z | |- 1 e. ZZ |
|
| 3 | 2 | a1i | |- ( T. -> 1 e. ZZ ) |
| 4 | 0ss | |- (/) C_ NN |
|
| 5 | 4 | a1i | |- ( T. -> (/) C_ NN ) |
| 6 | simpr | |- ( ( T. /\ k e. NN ) -> k e. NN ) |
|
| 7 | 6 1 | eleqtrdi | |- ( ( T. /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 8 | c0ex | |- 0 e. _V |
|
| 9 | 8 | fvconst2 | |- ( k e. ( ZZ>= ` 1 ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = 0 ) |
| 10 | 7 9 | syl | |- ( ( T. /\ k e. NN ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = 0 ) |
| 11 | noel | |- -. k e. (/) |
|
| 12 | 11 | iffalsei | |- if ( k e. (/) , A , 0 ) = 0 |
| 13 | 10 12 | eqtr4di | |- ( ( T. /\ k e. NN ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = if ( k e. (/) , A , 0 ) ) |
| 14 | 11 | pm2.21i | |- ( k e. (/) -> A e. CC ) |
| 15 | 14 | adantl | |- ( ( T. /\ k e. (/) ) -> A e. CC ) |
| 16 | 1 3 5 13 15 | zsum | |- ( T. -> sum_ k e. (/) A = ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) ) |
| 17 | 16 | mptru | |- sum_ k e. (/) A = ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) |
| 18 | fclim | |- ~~> : dom ~~> --> CC |
|
| 19 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 20 | 18 19 | ax-mp | |- Fun ~~> |
| 21 | serclim0 | |- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
|
| 22 | 2 21 | ax-mp | |- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 |
| 23 | funbrfv | |- ( Fun ~~> -> ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 -> ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) = 0 ) ) |
|
| 24 | 20 22 23 | mp2 | |- ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) = 0 |
| 25 | 17 24 | eqtri | |- sum_ k e. (/) A = 0 |