This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property " F is a Cauchy sequence of metric D " presupposing F is a function. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscau3.2 | |- Z = ( ZZ>= ` M ) |
|
| iscau3.3 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| iscau3.4 | |- ( ph -> M e. ZZ ) |
||
| iscau4.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| iscau4.6 | |- ( ( ph /\ j e. Z ) -> ( F ` j ) = B ) |
||
| iscauf.7 | |- ( ph -> F : Z --> X ) |
||
| Assertion | iscauf | |- ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B D A ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscau3.2 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iscau3.3 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 3 | iscau3.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | iscau4.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 5 | iscau4.6 | |- ( ( ph /\ j e. Z ) -> ( F ` j ) = B ) |
|
| 6 | iscauf.7 | |- ( ph -> F : Z --> X ) |
|
| 7 | elfvdm | |- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
|
| 8 | 2 7 | syl | |- ( ph -> X e. dom *Met ) |
| 9 | cnex | |- CC e. _V |
|
| 10 | 8 9 | jctir | |- ( ph -> ( X e. dom *Met /\ CC e. _V ) ) |
| 11 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 12 | zsscn | |- ZZ C_ CC |
|
| 13 | 11 12 | sstri | |- ( ZZ>= ` M ) C_ CC |
| 14 | 1 13 | eqsstri | |- Z C_ CC |
| 15 | 6 14 | jctir | |- ( ph -> ( F : Z --> X /\ Z C_ CC ) ) |
| 16 | elpm2r | |- ( ( ( X e. dom *Met /\ CC e. _V ) /\ ( F : Z --> X /\ Z C_ CC ) ) -> F e. ( X ^pm CC ) ) |
|
| 17 | 10 15 16 | syl2anc | |- ( ph -> F e. ( X ^pm CC ) ) |
| 18 | 17 | biantrurd | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) ) |
| 19 | 2 | adantr | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> D e. ( *Met ` X ) ) |
| 20 | 5 | adantrr | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) = B ) |
| 21 | 6 | adantr | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> F : Z --> X ) |
| 22 | simprl | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> j e. Z ) |
|
| 23 | 21 22 | ffvelcdmd | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. X ) |
| 24 | 20 23 | eqeltrrd | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> B e. X ) |
| 25 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 26 | 25 4 | sylan2 | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) = A ) |
| 27 | ffvelcdm | |- ( ( F : Z --> X /\ k e. Z ) -> ( F ` k ) e. X ) |
|
| 28 | 6 25 27 | syl2an | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. X ) |
| 29 | 26 28 | eqeltrrd | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A e. X ) |
| 30 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) = ( A D B ) ) |
|
| 31 | 19 24 29 30 | syl3anc | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( B D A ) = ( A D B ) ) |
| 32 | 31 | breq1d | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( B D A ) < x <-> ( A D B ) < x ) ) |
| 33 | fdm | |- ( F : Z --> X -> dom F = Z ) |
|
| 34 | 33 | eleq2d | |- ( F : Z --> X -> ( k e. dom F <-> k e. Z ) ) |
| 35 | 34 | biimpar | |- ( ( F : Z --> X /\ k e. Z ) -> k e. dom F ) |
| 36 | 6 25 35 | syl2an | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> k e. dom F ) |
| 37 | 36 29 | jca | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( k e. dom F /\ A e. X ) ) |
| 38 | 37 | biantrurd | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( A D B ) < x <-> ( ( k e. dom F /\ A e. X ) /\ ( A D B ) < x ) ) ) |
| 39 | df-3an | |- ( ( k e. dom F /\ A e. X /\ ( A D B ) < x ) <-> ( ( k e. dom F /\ A e. X ) /\ ( A D B ) < x ) ) |
|
| 40 | 38 39 | bitr4di | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( A D B ) < x <-> ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 41 | 32 40 | bitrd | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( B D A ) < x <-> ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 42 | 41 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( B D A ) < x <-> ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 43 | 42 | ralbidva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( B D A ) < x <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 44 | 43 | rexbidva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B D A ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 45 | 44 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B D A ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) |
| 46 | 1 2 3 4 5 | iscau4 | |- ( ph -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ A e. X /\ ( A D B ) < x ) ) ) ) |
| 47 | 18 45 46 | 3bitr4rd | |- ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B D A ) < x ) ) |