This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Proof shortened by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvg.1 | |- Z = ( ZZ>= ` M ) |
|
| caucvg.2 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| caucvg.3 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) |
||
| caucvg.4 | |- ( ph -> F e. V ) |
||
| Assertion | caucvg | |- ( ph -> F e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvg.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | caucvg.2 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 3 | caucvg.3 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) |
|
| 4 | caucvg.4 | |- ( ph -> F e. V ) |
|
| 5 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 6 | 5 | cbvmptv | |- ( k e. Z |-> ( F ` k ) ) = ( n e. Z |-> ( F ` n ) ) |
| 7 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 8 | 1 7 | eqsstri | |- Z C_ ZZ |
| 9 | zssre | |- ZZ C_ RR |
|
| 10 | 8 9 | sstri | |- Z C_ RR |
| 11 | 10 | a1i | |- ( ph -> Z C_ RR ) |
| 12 | 6 | eqcomi | |- ( n e. Z |-> ( F ` n ) ) = ( k e. Z |-> ( F ` k ) ) |
| 13 | 2 12 | fmptd | |- ( ph -> ( n e. Z |-> ( F ` n ) ) : Z --> CC ) |
| 14 | 1rp | |- 1 e. RR+ |
|
| 15 | 14 | ne0ii | |- RR+ =/= (/) |
| 16 | r19.2z | |- ( ( RR+ =/= (/) /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) |
|
| 17 | 15 3 16 | sylancr | |- ( ph -> E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) |
| 18 | eluzel2 | |- ( j e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 19 | 18 1 | eleq2s | |- ( j e. Z -> M e. ZZ ) |
| 20 | 19 | a1d | |- ( j e. Z -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> M e. ZZ ) ) |
| 21 | 20 | rexlimiv | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> M e. ZZ ) |
| 22 | 21 | rexlimivw | |- ( E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> M e. ZZ ) |
| 23 | 17 22 | syl | |- ( ph -> M e. ZZ ) |
| 24 | 1 | uzsup | |- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
| 25 | 23 24 | syl | |- ( ph -> sup ( Z , RR* , < ) = +oo ) |
| 26 | 8 | sseli | |- ( j e. Z -> j e. ZZ ) |
| 27 | 8 | sseli | |- ( k e. Z -> k e. ZZ ) |
| 28 | eluz | |- ( ( j e. ZZ /\ k e. ZZ ) -> ( k e. ( ZZ>= ` j ) <-> j <_ k ) ) |
|
| 29 | 26 27 28 | syl2an | |- ( ( j e. Z /\ k e. Z ) -> ( k e. ( ZZ>= ` j ) <-> j <_ k ) ) |
| 30 | 29 | biimprd | |- ( ( j e. Z /\ k e. Z ) -> ( j <_ k -> k e. ( ZZ>= ` j ) ) ) |
| 31 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 32 | eqid | |- ( n e. Z |-> ( F ` n ) ) = ( n e. Z |-> ( F ` n ) ) |
|
| 33 | fvex | |- ( F ` n ) e. _V |
|
| 34 | 31 32 33 | fvmpt3i | |- ( k e. Z -> ( ( n e. Z |-> ( F ` n ) ) ` k ) = ( F ` k ) ) |
| 35 | fveq2 | |- ( n = j -> ( F ` n ) = ( F ` j ) ) |
|
| 36 | 35 32 33 | fvmpt3i | |- ( j e. Z -> ( ( n e. Z |-> ( F ` n ) ) ` j ) = ( F ` j ) ) |
| 37 | 34 36 | oveqan12rd | |- ( ( j e. Z /\ k e. Z ) -> ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) = ( ( F ` k ) - ( F ` j ) ) ) |
| 38 | 37 | fveq2d | |- ( ( j e. Z /\ k e. Z ) -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 39 | 38 | breq1d | |- ( ( j e. Z /\ k e. Z ) -> ( ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 40 | 39 | biimprd | |- ( ( j e. Z /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) |
| 41 | 30 40 | imim12d | |- ( ( j e. Z /\ k e. Z ) -> ( ( k e. ( ZZ>= ` j ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) ) |
| 42 | 41 | ex | |- ( j e. Z -> ( k e. Z -> ( ( k e. ( ZZ>= ` j ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) ) ) |
| 43 | 42 | com23 | |- ( j e. Z -> ( ( k e. ( ZZ>= ` j ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( k e. Z -> ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) ) ) |
| 44 | 43 | ralimdv2 | |- ( j e. Z -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> A. k e. Z ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) ) |
| 45 | 44 | reximia | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> E. j e. Z A. k e. Z ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) |
| 46 | 45 | ralimi | |- ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> A. x e. RR+ E. j e. Z A. k e. Z ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) |
| 47 | 3 46 | syl | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. Z ( j <_ k -> ( abs ` ( ( ( n e. Z |-> ( F ` n ) ) ` k ) - ( ( n e. Z |-> ( F ` n ) ) ` j ) ) ) < x ) ) |
| 48 | 11 13 25 47 | caucvgr | |- ( ph -> ( n e. Z |-> ( F ` n ) ) e. dom ~~>r ) |
| 49 | 13 25 | rlimdm | |- ( ph -> ( ( n e. Z |-> ( F ` n ) ) e. dom ~~>r <-> ( n e. Z |-> ( F ` n ) ) ~~>r ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) ) |
| 50 | 48 49 | mpbid | |- ( ph -> ( n e. Z |-> ( F ` n ) ) ~~>r ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) |
| 51 | 6 50 | eqbrtrid | |- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~>r ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) |
| 52 | eqid | |- ( k e. Z |-> ( F ` k ) ) = ( k e. Z |-> ( F ` k ) ) |
|
| 53 | 2 52 | fmptd | |- ( ph -> ( k e. Z |-> ( F ` k ) ) : Z --> CC ) |
| 54 | 1 23 53 | rlimclim | |- ( ph -> ( ( k e. Z |-> ( F ` k ) ) ~~>r ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) <-> ( k e. Z |-> ( F ` k ) ) ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) ) |
| 55 | 51 54 | mpbid | |- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) |
| 56 | 1 52 | climmpt | |- ( ( M e. ZZ /\ F e. V ) -> ( F ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) <-> ( k e. Z |-> ( F ` k ) ) ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) ) |
| 57 | 23 4 56 | syl2anc | |- ( ph -> ( F ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) <-> ( k e. Z |-> ( F ` k ) ) ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) ) |
| 58 | 55 57 | mpbird | |- ( ph -> F ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) ) |
| 59 | climrel | |- Rel ~~> |
|
| 60 | 59 | releldmi | |- ( F ~~> ( ~~>r ` ( n e. Z |-> ( F ` n ) ) ) -> F e. dom ~~> ) |
| 61 | 58 60 | syl | |- ( ph -> F e. dom ~~> ) |