This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrnval.1 | |- X = ( RR ^m I ) |
|
| Assertion | rrnmval | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | |- X = ( RR ^m I ) |
|
| 2 | 1 | rrnval | |- ( I e. Fin -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 3 | 2 | 3ad2ant1 | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 4 | fveq1 | |- ( x = F -> ( x ` k ) = ( F ` k ) ) |
|
| 5 | fveq1 | |- ( y = G -> ( y ` k ) = ( G ` k ) ) |
|
| 6 | 4 5 | oveqan12d | |- ( ( x = F /\ y = G ) -> ( ( x ` k ) - ( y ` k ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 7 | 6 | oveq1d | |- ( ( x = F /\ y = G ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 8 | 7 | sumeq2sdv | |- ( ( x = F /\ y = G ) -> sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 9 | 8 | fveq2d | |- ( ( x = F /\ y = G ) -> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 10 | 9 | adantl | |- ( ( ( I e. Fin /\ F e. X /\ G e. X ) /\ ( x = F /\ y = G ) ) -> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 11 | simp2 | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> F e. X ) |
|
| 12 | simp3 | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> G e. X ) |
|
| 13 | fvexd | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) e. _V ) |
|
| 14 | 3 10 11 12 13 | ovmpod | |- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |