This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrncms.1 | |- X = ( RR ^m I ) |
|
| Assertion | rrncms | |- ( I e. Fin -> ( Rn ` I ) e. ( CMet ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrncms.1 | |- X = ( RR ^m I ) |
|
| 2 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 3 | eqid | |- ( MetOpen ` ( Rn ` I ) ) = ( MetOpen ` ( Rn ` I ) ) |
|
| 4 | simpll | |- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> I e. Fin ) |
|
| 5 | simplr | |- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. ( Cau ` ( Rn ` I ) ) ) |
|
| 6 | simpr | |- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f : NN --> X ) |
|
| 7 | eqid | |- ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) ) = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | rrncmslem | |- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) |
| 9 | 8 | ex | |- ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) |
| 10 | 9 | ralrimiva | |- ( I e. Fin -> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) |
| 11 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 12 | 1zzd | |- ( I e. Fin -> 1 e. ZZ ) |
|
| 13 | 1 | rrnmet | |- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
| 14 | 11 3 12 13 | iscmet3 | |- ( I e. Fin -> ( ( Rn ` I ) e. ( CMet ` X ) <-> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) ) |
| 15 | 10 14 | mpbird | |- ( I e. Fin -> ( Rn ` I ) e. ( CMet ` X ) ) |