This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006) (Revised by Mario Carneiro, 12-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2ixp | |- ( A. x e. A B C_ C -> X_ x e. A B C_ X_ x e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( B C_ C -> ( ( f ` x ) e. B -> ( f ` x ) e. C ) ) |
|
| 2 | 1 | ral2imi | |- ( A. x e. A B C_ C -> ( A. x e. A ( f ` x ) e. B -> A. x e. A ( f ` x ) e. C ) ) |
| 3 | 2 | anim2d | |- ( A. x e. A B C_ C -> ( ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) -> ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. C ) ) ) |
| 4 | 3 | ss2abdv | |- ( A. x e. A B C_ C -> { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } C_ { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. C ) } ) |
| 5 | df-ixp | |- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |
|
| 6 | df-ixp | |- X_ x e. A C = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. C ) } |
|
| 7 | 4 5 6 | 3sstr4g | |- ( A. x e. A B C_ C -> X_ x e. A B C_ X_ x e. A C ) |