This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of Suppes p. 91. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephlim | |- ( ( A e. V /\ Lim A ) -> ( aleph ` A ) = U_ x e. A ( aleph ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdglim2a | |- ( ( A e. V /\ Lim A ) -> ( rec ( har , _om ) ` A ) = U_ x e. A ( rec ( har , _om ) ` x ) ) |
|
| 2 | df-aleph | |- aleph = rec ( har , _om ) |
|
| 3 | 2 | fveq1i | |- ( aleph ` A ) = ( rec ( har , _om ) ` A ) |
| 4 | 2 | fveq1i | |- ( aleph ` x ) = ( rec ( har , _om ) ` x ) |
| 5 | 4 | a1i | |- ( x e. A -> ( aleph ` x ) = ( rec ( har , _om ) ` x ) ) |
| 6 | 5 | iuneq2i | |- U_ x e. A ( aleph ` x ) = U_ x e. A ( rec ( har , _om ) ` x ) |
| 7 | 1 3 6 | 3eqtr4g | |- ( ( A e. V /\ Lim A ) -> ( aleph ` A ) = U_ x e. A ( aleph ` x ) ) |