This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every aleph is a cardinal number. Theorem 65 of Suppes p. 229. (Contributed by NM, 25-Oct-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephcard | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | |- ( x = (/) -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` (/) ) ) ) |
|
| 2 | fveq2 | |- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = (/) -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) ) ) |
| 4 | 2fveq3 | |- ( x = y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` y ) ) ) |
|
| 5 | fveq2 | |- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) ) |
| 7 | 2fveq3 | |- ( x = suc y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` suc y ) ) ) |
|
| 8 | fveq2 | |- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = suc y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) |
| 10 | 2fveq3 | |- ( x = A -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` A ) ) ) |
|
| 11 | fveq2 | |- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = A -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) ) |
| 13 | cardom | |- ( card ` _om ) = _om |
|
| 14 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 15 | 14 | fveq2i | |- ( card ` ( aleph ` (/) ) ) = ( card ` _om ) |
| 16 | 13 15 14 | 3eqtr4i | |- ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) |
| 17 | harcard | |- ( card ` ( har ` ( aleph ` y ) ) ) = ( har ` ( aleph ` y ) ) |
|
| 18 | alephsuc | |- ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) |
|
| 19 | 18 | fveq2d | |- ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( card ` ( har ` ( aleph ` y ) ) ) ) |
| 20 | 17 19 18 | 3eqtr4a | |- ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) |
| 21 | 20 | a1d | |- ( y e. On -> ( ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) |
| 22 | cardiun | |- ( x e. _V -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) ) |
|
| 23 | 22 | elv | |- ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) |
| 24 | 23 | adantl | |- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) |
| 25 | vex | |- x e. _V |
|
| 26 | alephlim | |- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
|
| 27 | 25 26 | mpan | |- ( Lim x -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
| 28 | 27 | adantr | |- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
| 29 | 28 | fveq2d | |- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( card ` U_ y e. x ( aleph ` y ) ) ) |
| 30 | 24 29 28 | 3eqtr4d | |- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) |
| 31 | 30 | ex | |- ( Lim x -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) ) |
| 32 | 3 6 9 12 16 21 31 | tfinds | |- ( A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 33 | card0 | |- ( card ` (/) ) = (/) |
|
| 34 | alephfnon | |- aleph Fn On |
|
| 35 | 34 | fndmi | |- dom aleph = On |
| 36 | 35 | eleq2i | |- ( A e. dom aleph <-> A e. On ) |
| 37 | ndmfv | |- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
|
| 38 | 36 37 | sylnbir | |- ( -. A e. On -> ( aleph ` A ) = (/) ) |
| 39 | 38 | fveq2d | |- ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( card ` (/) ) ) |
| 40 | 33 39 38 | 3eqtr4a | |- ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
| 41 | 32 40 | pm2.61i | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |