This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of Suppes p. 228. (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harcard | |- ( card ` ( har ` A ) ) = ( har ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | |- ( har ` A ) e. On |
|
| 2 | harndom | |- -. ( har ` A ) ~<_ A |
|
| 3 | simpll | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> x e. On ) |
|
| 4 | simpr | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> y e. ( har ` A ) ) |
|
| 5 | elharval | |- ( y e. ( har ` A ) <-> ( y e. On /\ y ~<_ A ) ) |
|
| 6 | 4 5 | sylib | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> ( y e. On /\ y ~<_ A ) ) |
| 7 | 6 | simpld | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> y e. On ) |
| 8 | ontri1 | |- ( ( x e. On /\ y e. On ) -> ( x C_ y <-> -. y e. x ) ) |
|
| 9 | 3 7 8 | syl2anc | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> ( x C_ y <-> -. y e. x ) ) |
| 10 | simpllr | |- ( ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) /\ x C_ y ) -> ( har ` A ) ~~ x ) |
|
| 11 | ssdomg | |- ( y e. _V -> ( x C_ y -> x ~<_ y ) ) |
|
| 12 | 11 | elv | |- ( x C_ y -> x ~<_ y ) |
| 13 | 6 | simprd | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> y ~<_ A ) |
| 14 | domtr | |- ( ( x ~<_ y /\ y ~<_ A ) -> x ~<_ A ) |
|
| 15 | 12 13 14 | syl2anr | |- ( ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) /\ x C_ y ) -> x ~<_ A ) |
| 16 | endomtr | |- ( ( ( har ` A ) ~~ x /\ x ~<_ A ) -> ( har ` A ) ~<_ A ) |
|
| 17 | 10 15 16 | syl2anc | |- ( ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) /\ x C_ y ) -> ( har ` A ) ~<_ A ) |
| 18 | 17 | ex | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> ( x C_ y -> ( har ` A ) ~<_ A ) ) |
| 19 | 9 18 | sylbird | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> ( -. y e. x -> ( har ` A ) ~<_ A ) ) |
| 20 | 2 19 | mt3i | |- ( ( ( x e. On /\ ( har ` A ) ~~ x ) /\ y e. ( har ` A ) ) -> y e. x ) |
| 21 | 20 | ex | |- ( ( x e. On /\ ( har ` A ) ~~ x ) -> ( y e. ( har ` A ) -> y e. x ) ) |
| 22 | 21 | ssrdv | |- ( ( x e. On /\ ( har ` A ) ~~ x ) -> ( har ` A ) C_ x ) |
| 23 | 22 | ex | |- ( x e. On -> ( ( har ` A ) ~~ x -> ( har ` A ) C_ x ) ) |
| 24 | 23 | rgen | |- A. x e. On ( ( har ` A ) ~~ x -> ( har ` A ) C_ x ) |
| 25 | iscard2 | |- ( ( card ` ( har ` A ) ) = ( har ` A ) <-> ( ( har ` A ) e. On /\ A. x e. On ( ( har ` A ) ~~ x -> ( har ` A ) C_ x ) ) ) |
|
| 26 | 1 24 25 | mpbir2an | |- ( card ` ( har ` A ) ) = ( har ` A ) |