This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephon | |- ( aleph ` A ) e. On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | |- aleph Fn On |
|
| 2 | fveq2 | |- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
|
| 3 | 2 | eleq1d | |- ( x = (/) -> ( ( aleph ` x ) e. On <-> ( aleph ` (/) ) e. On ) ) |
| 4 | fveq2 | |- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
|
| 5 | 4 | eleq1d | |- ( x = y -> ( ( aleph ` x ) e. On <-> ( aleph ` y ) e. On ) ) |
| 6 | fveq2 | |- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
|
| 7 | 6 | eleq1d | |- ( x = suc y -> ( ( aleph ` x ) e. On <-> ( aleph ` suc y ) e. On ) ) |
| 8 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 9 | omelon | |- _om e. On |
|
| 10 | 8 9 | eqeltri | |- ( aleph ` (/) ) e. On |
| 11 | alephsuc | |- ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) |
|
| 12 | harcl | |- ( har ` ( aleph ` y ) ) e. On |
|
| 13 | 11 12 | eqeltrdi | |- ( y e. On -> ( aleph ` suc y ) e. On ) |
| 14 | 13 | a1d | |- ( y e. On -> ( ( aleph ` y ) e. On -> ( aleph ` suc y ) e. On ) ) |
| 15 | vex | |- x e. _V |
|
| 16 | iunon | |- ( ( x e. _V /\ A. y e. x ( aleph ` y ) e. On ) -> U_ y e. x ( aleph ` y ) e. On ) |
|
| 17 | 15 16 | mpan | |- ( A. y e. x ( aleph ` y ) e. On -> U_ y e. x ( aleph ` y ) e. On ) |
| 18 | alephlim | |- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
|
| 19 | 15 18 | mpan | |- ( Lim x -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
| 20 | 19 | eleq1d | |- ( Lim x -> ( ( aleph ` x ) e. On <-> U_ y e. x ( aleph ` y ) e. On ) ) |
| 21 | 17 20 | imbitrrid | |- ( Lim x -> ( A. y e. x ( aleph ` y ) e. On -> ( aleph ` x ) e. On ) ) |
| 22 | 3 5 7 5 10 14 21 | tfinds | |- ( y e. On -> ( aleph ` y ) e. On ) |
| 23 | 22 | rgen | |- A. y e. On ( aleph ` y ) e. On |
| 24 | ffnfv | |- ( aleph : On --> On <-> ( aleph Fn On /\ A. y e. On ( aleph ` y ) e. On ) ) |
|
| 25 | 1 23 24 | mpbir2an | |- aleph : On --> On |
| 26 | 0elon | |- (/) e. On |
|
| 27 | 25 26 | f0cli | |- ( aleph ` A ) e. On |