This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of Konig's Theorem konigth . Theorem 11.29 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfpwsdom.1 | |- B e. _V |
|
| Assertion | cfpwsdom | |- ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfpwsdom.1 | |- B e. _V |
|
| 2 | ovex | |- ( B ^m ( aleph ` A ) ) e. _V |
|
| 3 | 2 | cardid | |- ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) |
| 4 | 3 | ensymi | |- ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) |
| 5 | fvex | |- ( aleph ` A ) e. _V |
|
| 6 | 5 | canth2 | |- ( aleph ` A ) ~< ~P ( aleph ` A ) |
| 7 | 5 | pw2en | |- ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) |
| 8 | sdomentr | |- ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) |
| 10 | mapdom1 | |- ( 2o ~<_ B -> ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
|
| 11 | sdomdomtr | |- ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( B ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
|
| 12 | 9 10 11 | sylancr | |- ( 2o ~<_ B -> ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
| 13 | ficard | |- ( ( B ^m ( aleph ` A ) ) e. _V -> ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) |
|
| 14 | 2 13 | ax-mp | |- ( ( B ^m ( aleph ` A ) ) e. Fin <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) |
| 15 | fict | |- ( ( B ^m ( aleph ` A ) ) e. Fin -> ( B ^m ( aleph ` A ) ) ~<_ _om ) |
|
| 16 | 14 15 | sylbir | |- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( B ^m ( aleph ` A ) ) ~<_ _om ) |
| 17 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 18 | alephon | |- ( aleph ` A ) e. On |
|
| 19 | ssdomg | |- ( ( aleph ` A ) e. On -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
|
| 20 | 18 19 | ax-mp | |- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 21 | 17 20 | sylbi | |- ( A e. On -> _om ~<_ ( aleph ` A ) ) |
| 22 | domtr | |- ( ( ( B ^m ( aleph ` A ) ) ~<_ _om /\ _om ~<_ ( aleph ` A ) ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
|
| 23 | 16 21 22 | syl2an | |- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
| 24 | domnsym | |- ( ( B ^m ( aleph ` A ) ) ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om /\ A e. On ) -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) |
| 26 | 25 | expcom | |- ( A e. On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> -. ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) ) ) |
| 27 | 26 | con2d | |- ( A e. On -> ( ( aleph ` A ) ~< ( B ^m ( aleph ` A ) ) -> -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om ) ) |
| 28 | cardidm | |- ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) |
|
| 29 | iscard3 | |- ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) ) |
|
| 30 | elun | |- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ( _om u. ran aleph ) <-> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
|
| 31 | df-or | |- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) e. _om \/ ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
|
| 32 | 29 30 31 | 3bitri | |- ( ( card ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( card ` ( B ^m ( aleph ` A ) ) ) <-> ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
| 33 | 28 32 | mpbi | |- ( -. ( card ` ( B ^m ( aleph ` A ) ) ) e. _om -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) |
| 34 | 12 27 33 | syl56 | |- ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph ) ) |
| 35 | alephfnon | |- aleph Fn On |
|
| 36 | fvelrnb | |- ( aleph Fn On -> ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
|
| 37 | 35 36 | ax-mp | |- ( ( card ` ( B ^m ( aleph ` A ) ) ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) |
| 38 | 34 37 | imbitrdi | |- ( A e. On -> ( 2o ~<_ B -> E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| 39 | eqid | |- ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) = ( y e. ( cf ` ( aleph ` x ) ) |-> ( har ` ( z ` y ) ) ) |
|
| 40 | 39 | pwcfsdom | |- ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) |
| 41 | id | |- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) ) |
|
| 42 | fveq2 | |- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
|
| 43 | 41 42 | oveq12d | |- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) = ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 44 | 41 43 | breq12d | |- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( ( aleph ` x ) ~< ( ( aleph ` x ) ^m ( cf ` ( aleph ` x ) ) ) <-> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
| 45 | 40 44 | mpbii | |- ( ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 46 | 45 | rexlimivw | |- ( E. x e. On ( aleph ` x ) = ( card ` ( B ^m ( aleph ` A ) ) ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 47 | 38 46 | syl6 | |- ( A e. On -> ( 2o ~<_ B -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
| 48 | 47 | imp | |- ( ( A e. On /\ 2o ~<_ B ) -> ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 49 | ensdomtr | |- ( ( ( B ^m ( aleph ` A ) ) ~~ ( card ` ( B ^m ( aleph ` A ) ) ) /\ ( card ` ( B ^m ( aleph ` A ) ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
|
| 50 | 4 48 49 | sylancr | |- ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 51 | fvex | |- ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V |
|
| 52 | 51 | enref | |- ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) |
| 53 | mapen | |- ( ( ( card ` ( B ^m ( aleph ` A ) ) ) ~~ ( B ^m ( aleph ` A ) ) /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~~ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) -> ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
|
| 54 | 3 52 53 | mp2an | |- ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| 55 | mapxpen | |- ( ( B e. _V /\ ( aleph ` A ) e. On /\ ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V ) -> ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
|
| 56 | 1 18 51 55 | mp3an | |- ( ( B ^m ( aleph ` A ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 57 | 54 56 | entri | |- ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 58 | sdomentr | |- ( ( ( B ^m ( aleph ` A ) ) ~< ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) /\ ( ( card ` ( B ^m ( aleph ` A ) ) ) ^m ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~~ ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
|
| 59 | 50 57 58 | sylancl | |- ( ( A e. On /\ 2o ~<_ B ) -> ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
| 60 | 5 | xpdom2 | |- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) |
| 61 | 17 | biimpi | |- ( A e. On -> _om C_ ( aleph ` A ) ) |
| 62 | infxpen | |- ( ( ( aleph ` A ) e. On /\ _om C_ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
|
| 63 | 18 61 62 | sylancr | |- ( A e. On -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
| 64 | domentr | |- ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) /\ ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) |
|
| 65 | 60 63 64 | syl2an | |- ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) -> ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) ) |
| 66 | nsuceq0 | |- suc 1o =/= (/) |
|
| 67 | dom0 | |- ( suc 1o ~<_ (/) <-> suc 1o = (/) ) |
|
| 68 | 66 67 | nemtbir | |- -. suc 1o ~<_ (/) |
| 69 | df-2o | |- 2o = suc 1o |
|
| 70 | 69 | breq1i | |- ( 2o ~<_ B <-> suc 1o ~<_ B ) |
| 71 | breq2 | |- ( B = (/) -> ( suc 1o ~<_ B <-> suc 1o ~<_ (/) ) ) |
|
| 72 | 70 71 | bitrid | |- ( B = (/) -> ( 2o ~<_ B <-> suc 1o ~<_ (/) ) ) |
| 73 | 72 | biimpcd | |- ( 2o ~<_ B -> ( B = (/) -> suc 1o ~<_ (/) ) ) |
| 74 | 73 | adantld | |- ( 2o ~<_ B -> ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) -> suc 1o ~<_ (/) ) ) |
| 75 | 68 74 | mtoi | |- ( 2o ~<_ B -> -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) |
| 76 | mapdom2 | |- ( ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ~<_ ( aleph ` A ) /\ -. ( ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) = (/) /\ B = (/) ) ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
|
| 77 | 65 75 76 | syl2an | |- ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) ) |
| 78 | domnsym | |- ( ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ~<_ ( B ^m ( aleph ` A ) ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
|
| 79 | 77 78 | syl | |- ( ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) /\ A e. On ) /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) |
| 80 | 79 | expl | |- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> ( ( A e. On /\ 2o ~<_ B ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) |
| 81 | 80 | com12 | |- ( ( A e. On /\ 2o ~<_ B ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) -> -. ( B ^m ( aleph ` A ) ) ~< ( B ^m ( ( aleph ` A ) X. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) ) ) |
| 82 | 59 81 | mt2d | |- ( ( A e. On /\ 2o ~<_ B ) -> -. ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) |
| 83 | domtri | |- ( ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) e. _V /\ ( aleph ` A ) e. _V ) -> ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
|
| 84 | 51 5 83 | mp2an | |- ( ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) <-> -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| 85 | 84 | biimpri | |- ( -. ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ~<_ ( aleph ` A ) ) |
| 86 | 82 85 | nsyl2 | |- ( ( A e. On /\ 2o ~<_ B ) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| 87 | 86 | ex | |- ( A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 88 | fndm | |- ( aleph Fn On -> dom aleph = On ) |
|
| 89 | 35 88 | ax-mp | |- dom aleph = On |
| 90 | 89 | eleq2i | |- ( A e. dom aleph <-> A e. On ) |
| 91 | ndmfv | |- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
|
| 92 | 90 91 | sylnbir | |- ( -. A e. On -> ( aleph ` A ) = (/) ) |
| 93 | 1n0 | |- 1o =/= (/) |
|
| 94 | 1oex | |- 1o e. _V |
|
| 95 | 94 | 0sdom | |- ( (/) ~< 1o <-> 1o =/= (/) ) |
| 96 | 93 95 | mpbir | |- (/) ~< 1o |
| 97 | id | |- ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) |
|
| 98 | oveq2 | |- ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = ( B ^m (/) ) ) |
|
| 99 | map0e | |- ( B e. _V -> ( B ^m (/) ) = 1o ) |
|
| 100 | 1 99 | ax-mp | |- ( B ^m (/) ) = 1o |
| 101 | 98 100 | eqtrdi | |- ( ( aleph ` A ) = (/) -> ( B ^m ( aleph ` A ) ) = 1o ) |
| 102 | 101 | fveq2d | |- ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = ( card ` 1o ) ) |
| 103 | 1onn | |- 1o e. _om |
|
| 104 | cardnn | |- ( 1o e. _om -> ( card ` 1o ) = 1o ) |
|
| 105 | 103 104 | ax-mp | |- ( card ` 1o ) = 1o |
| 106 | 102 105 | eqtrdi | |- ( ( aleph ` A ) = (/) -> ( card ` ( B ^m ( aleph ` A ) ) ) = 1o ) |
| 107 | 106 | fveq2d | |- ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = ( cf ` 1o ) ) |
| 108 | df-1o | |- 1o = suc (/) |
|
| 109 | 108 | fveq2i | |- ( cf ` 1o ) = ( cf ` suc (/) ) |
| 110 | 0elon | |- (/) e. On |
|
| 111 | cfsuc | |- ( (/) e. On -> ( cf ` suc (/) ) = 1o ) |
|
| 112 | 110 111 | ax-mp | |- ( cf ` suc (/) ) = 1o |
| 113 | 109 112 | eqtri | |- ( cf ` 1o ) = 1o |
| 114 | 107 113 | eqtrdi | |- ( ( aleph ` A ) = (/) -> ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) = 1o ) |
| 115 | 97 114 | breq12d | |- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) <-> (/) ~< 1o ) ) |
| 116 | 96 115 | mpbiri | |- ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |
| 117 | 116 | a1d | |- ( ( aleph ` A ) = (/) -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 118 | 92 117 | syl | |- ( -. A e. On -> ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) ) |
| 119 | 87 118 | pm2.61i | |- ( 2o ~<_ B -> ( aleph ` A ) ~< ( cf ` ( card ` ( B ^m ( aleph ` A ) ) ) ) ) |