This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom1 | |- ( A ~<_ B -> ( A ^m C ) ~<_ ( B ^m C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 3 | domeng | |- ( B e. _V -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
|
| 4 | 2 3 | syl | |- ( A ~<_ B -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
| 5 | 4 | ibi | |- ( A ~<_ B -> E. x ( A ~~ x /\ x C_ B ) ) |
| 6 | 5 | adantr | |- ( ( A ~<_ B /\ C e. _V ) -> E. x ( A ~~ x /\ x C_ B ) ) |
| 7 | simpl | |- ( ( A ~~ x /\ x C_ B ) -> A ~~ x ) |
|
| 8 | enrefg | |- ( C e. _V -> C ~~ C ) |
|
| 9 | 8 | adantl | |- ( ( A ~<_ B /\ C e. _V ) -> C ~~ C ) |
| 10 | mapen | |- ( ( A ~~ x /\ C ~~ C ) -> ( A ^m C ) ~~ ( x ^m C ) ) |
|
| 11 | 7 9 10 | syl2anr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( A ^m C ) ~~ ( x ^m C ) ) |
| 12 | ovex | |- ( B ^m C ) e. _V |
|
| 13 | 2 | ad2antrr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> B e. _V ) |
| 14 | simprr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> x C_ B ) |
|
| 15 | mapss | |- ( ( B e. _V /\ x C_ B ) -> ( x ^m C ) C_ ( B ^m C ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( x ^m C ) C_ ( B ^m C ) ) |
| 17 | ssdomg | |- ( ( B ^m C ) e. _V -> ( ( x ^m C ) C_ ( B ^m C ) -> ( x ^m C ) ~<_ ( B ^m C ) ) ) |
|
| 18 | 12 16 17 | mpsyl | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( x ^m C ) ~<_ ( B ^m C ) ) |
| 19 | endomtr | |- ( ( ( A ^m C ) ~~ ( x ^m C ) /\ ( x ^m C ) ~<_ ( B ^m C ) ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
|
| 20 | 11 18 19 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
| 21 | 6 20 | exlimddv | |- ( ( A ~<_ B /\ C e. _V ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
| 22 | elmapex | |- ( x e. ( A ^m C ) -> ( A e. _V /\ C e. _V ) ) |
|
| 23 | 22 | simprd | |- ( x e. ( A ^m C ) -> C e. _V ) |
| 24 | 23 | con3i | |- ( -. C e. _V -> -. x e. ( A ^m C ) ) |
| 25 | 24 | eq0rdv | |- ( -. C e. _V -> ( A ^m C ) = (/) ) |
| 26 | 25 | adantl | |- ( ( A ~<_ B /\ -. C e. _V ) -> ( A ^m C ) = (/) ) |
| 27 | 12 | 0dom | |- (/) ~<_ ( B ^m C ) |
| 28 | 26 27 | eqbrtrdi | |- ( ( A ~<_ B /\ -. C e. _V ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
| 29 | 21 28 | pm2.61dan | |- ( A ~<_ B -> ( A ^m C ) ~<_ ( B ^m C ) ) |