This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor aleph is regular. Theorem 11.15 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephreg | |- ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 | |- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
|
| 2 | alephon | |- ( aleph ` suc A ) e. On |
|
| 3 | cff1 | |- ( ( aleph ` suc A ) e. On -> E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) ) |
|
| 4 | 2 3 | ax-mp | |- E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) |
| 5 | fvex | |- ( cf ` ( aleph ` suc A ) ) e. _V |
|
| 6 | fvex | |- ( f ` y ) e. _V |
|
| 7 | 6 | sucex | |- suc ( f ` y ) e. _V |
| 8 | 5 7 | iunex | |- U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) e. _V |
| 9 | f1f | |- ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) -> f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) |
| 11 | simplr | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) |
|
| 12 | 2 | oneli | |- ( x e. ( aleph ` suc A ) -> x e. On ) |
| 13 | ffvelcdm | |- ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( f ` y ) e. ( aleph ` suc A ) ) |
|
| 14 | onelon | |- ( ( ( aleph ` suc A ) e. On /\ ( f ` y ) e. ( aleph ` suc A ) ) -> ( f ` y ) e. On ) |
|
| 15 | 2 13 14 | sylancr | |- ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( f ` y ) e. On ) |
| 16 | onsssuc | |- ( ( x e. On /\ ( f ` y ) e. On ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) |
|
| 17 | 15 16 | sylan2 | |- ( ( x e. On /\ ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) |
| 18 | 17 | anassrs | |- ( ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) |
| 19 | 18 | rexbidva | |- ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> E. y e. ( cf ` ( aleph ` suc A ) ) x e. suc ( f ` y ) ) ) |
| 20 | eliun | |- ( x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) <-> E. y e. ( cf ` ( aleph ` suc A ) ) x e. suc ( f ` y ) ) |
|
| 21 | 19 20 | bitr4di | |- ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
| 22 | 21 | ancoms | |- ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ x e. On ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
| 23 | 12 22 | sylan2 | |- ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ x e. ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
| 24 | 23 | ralbidva | |- ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) -> ( A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> A. x e. ( aleph ` suc A ) x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
| 25 | dfss3 | |- ( ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) <-> A. x e. ( aleph ` suc A ) x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) |
|
| 26 | 24 25 | bitr4di | |- ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) -> ( A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
| 27 | 26 | biimpa | |- ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) |
| 28 | 10 11 27 | syl2anc | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) |
| 29 | ssdomg | |- ( U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) e. _V -> ( ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) -> ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) |
|
| 30 | 8 28 29 | mpsyl | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) |
| 31 | simprl | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> A e. On ) |
|
| 32 | onsuc | |- ( A e. On -> suc A e. On ) |
|
| 33 | alephislim | |- ( suc A e. On <-> Lim ( aleph ` suc A ) ) |
|
| 34 | limsuc | |- ( Lim ( aleph ` suc A ) -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) |
|
| 35 | 33 34 | sylbi | |- ( suc A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) |
| 36 | 32 35 | syl | |- ( A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) |
| 37 | breq1 | |- ( z = suc ( f ` y ) -> ( z ~< ( aleph ` suc A ) <-> suc ( f ` y ) ~< ( aleph ` suc A ) ) ) |
|
| 38 | alephcard | |- ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |
|
| 39 | iscard | |- ( ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) <-> ( ( aleph ` suc A ) e. On /\ A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) ) ) |
|
| 40 | 39 | simprbi | |- ( ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) -> A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) ) |
| 41 | 38 40 | ax-mp | |- A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) |
| 42 | 37 41 | vtoclri | |- ( suc ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~< ( aleph ` suc A ) ) |
| 43 | alephsucdom | |- ( A e. On -> ( suc ( f ` y ) ~<_ ( aleph ` A ) <-> suc ( f ` y ) ~< ( aleph ` suc A ) ) ) |
|
| 44 | 42 43 | imbitrrid | |- ( A e. On -> ( suc ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) |
| 45 | 36 44 | sylbid | |- ( A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) |
| 46 | 13 45 | syl5 | |- ( A e. On -> ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) |
| 47 | 46 | expdimp | |- ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( y e. ( cf ` ( aleph ` suc A ) ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) |
| 48 | 47 | ralrimiv | |- ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> A. y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( aleph ` A ) ) |
| 49 | iundom | |- ( ( ( cf ` ( aleph ` suc A ) ) e. _V /\ A. y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( aleph ` A ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
|
| 50 | 5 48 49 | sylancr | |- ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
| 51 | 31 10 50 | syl2anc | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
| 52 | domtr | |- ( ( ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) /\ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
|
| 53 | 30 51 52 | syl2anc | |- ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
| 54 | 53 | expcom | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) ) |
| 55 | 54 | exlimdv | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) ) |
| 56 | 4 55 | mpi | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) |
| 57 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 58 | alephon | |- ( aleph ` A ) e. On |
|
| 59 | infxpen | |- ( ( ( aleph ` A ) e. On /\ _om C_ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
|
| 60 | 58 59 | mpan | |- ( _om C_ ( aleph ` A ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
| 61 | 57 60 | sylbi | |- ( A e. On -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) |
| 62 | breq1 | |- ( z = ( cf ` ( aleph ` suc A ) ) -> ( z ~< ( aleph ` suc A ) <-> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) ) |
|
| 63 | 62 41 | vtoclri | |- ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) |
| 64 | alephsucdom | |- ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) <-> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) ) |
|
| 65 | 63 64 | imbitrrid | |- ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) ) ) |
| 66 | fvex | |- ( aleph ` A ) e. _V |
|
| 67 | 66 | xpdom1 | |- ( ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) |
| 68 | 65 67 | syl6 | |- ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) ) |
| 69 | domentr | |- ( ( ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) /\ ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
|
| 70 | 69 | expcom | |- ( ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) -> ( ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) ) |
| 71 | 61 68 70 | sylsyld | |- ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) ) |
| 72 | 71 | imp | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) |
| 73 | domtr | |- ( ( ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) /\ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) -> ( aleph ` suc A ) ~<_ ( aleph ` A ) ) |
|
| 74 | 56 72 73 | syl2anc | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~<_ ( aleph ` A ) ) |
| 75 | domnsym | |- ( ( aleph ` suc A ) ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) |
|
| 76 | 74 75 | syl | |- ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) |
| 77 | 76 | ex | |- ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) ) |
| 78 | 1 77 | mt2d | |- ( A e. On -> -. ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) |
| 79 | cfon | |- ( cf ` ( aleph ` suc A ) ) e. On |
|
| 80 | cfle | |- ( cf ` ( aleph ` suc A ) ) C_ ( aleph ` suc A ) |
|
| 81 | onsseleq | |- ( ( ( cf ` ( aleph ` suc A ) ) e. On /\ ( aleph ` suc A ) e. On ) -> ( ( cf ` ( aleph ` suc A ) ) C_ ( aleph ` suc A ) <-> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) ) ) |
|
| 82 | 80 81 | mpbii | |- ( ( ( cf ` ( aleph ` suc A ) ) e. On /\ ( aleph ` suc A ) e. On ) -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) ) |
| 83 | 79 2 82 | mp2an | |- ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) |
| 84 | 83 | ori | |- ( -. ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) |
| 85 | 78 84 | syl | |- ( A e. On -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) |
| 86 | cf0 | |- ( cf ` (/) ) = (/) |
|
| 87 | alephfnon | |- aleph Fn On |
|
| 88 | 87 | fndmi | |- dom aleph = On |
| 89 | 88 | eleq2i | |- ( suc A e. dom aleph <-> suc A e. On ) |
| 90 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 91 | 89 90 | bitr4i | |- ( suc A e. dom aleph <-> A e. On ) |
| 92 | ndmfv | |- ( -. suc A e. dom aleph -> ( aleph ` suc A ) = (/) ) |
|
| 93 | 91 92 | sylnbir | |- ( -. A e. On -> ( aleph ` suc A ) = (/) ) |
| 94 | 93 | fveq2d | |- ( -. A e. On -> ( cf ` ( aleph ` suc A ) ) = ( cf ` (/) ) ) |
| 95 | 86 94 93 | 3eqtr4a | |- ( -. A e. On -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) |
| 96 | 85 95 | pm2.61i | |- ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |