This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onzsl | |- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. On -> A e. _V ) |
|
| 2 | eloni | |- ( A e. On -> Ord A ) |
|
| 3 | ordzsl | |- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
|
| 4 | 3mix1 | |- ( A = (/) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
|
| 5 | 4 | adantl | |- ( ( A e. _V /\ A = (/) ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 6 | 3mix2 | |- ( E. x e. On A = suc x -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. _V /\ E. x e. On A = suc x ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 8 | 3mix3 | |- ( ( A e. _V /\ Lim A ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
|
| 9 | 5 7 8 | 3jaodan | |- ( ( A e. _V /\ ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 10 | 3 9 | sylan2b | |- ( ( A e. _V /\ Ord A ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 11 | 1 2 10 | syl2anc | |- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 12 | 0elon | |- (/) e. On |
|
| 13 | eleq1 | |- ( A = (/) -> ( A e. On <-> (/) e. On ) ) |
|
| 14 | 12 13 | mpbiri | |- ( A = (/) -> A e. On ) |
| 15 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 16 | eleq1 | |- ( A = suc x -> ( A e. On <-> suc x e. On ) ) |
|
| 17 | 15 16 | syl5ibrcom | |- ( x e. On -> ( A = suc x -> A e. On ) ) |
| 18 | 17 | rexlimiv | |- ( E. x e. On A = suc x -> A e. On ) |
| 19 | limelon | |- ( ( A e. _V /\ Lim A ) -> A e. On ) |
|
| 20 | 14 18 19 | 3jaoi | |- ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> A e. On ) |
| 21 | 11 20 | impbii | |- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |