This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscard | |- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | |- ( card ` A ) e. On |
|
| 2 | eleq1 | |- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
|
| 3 | 1 2 | mpbii | |- ( ( card ` A ) = A -> A e. On ) |
| 4 | cardonle | |- ( A e. On -> ( card ` A ) C_ A ) |
|
| 5 | eqss | |- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
|
| 6 | 5 | baibr | |- ( ( card ` A ) C_ A -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
| 7 | 4 6 | syl | |- ( A e. On -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
| 8 | dfss3 | |- ( A C_ ( card ` A ) <-> A. x e. A x e. ( card ` A ) ) |
|
| 9 | onelon | |- ( ( A e. On /\ x e. A ) -> x e. On ) |
|
| 10 | onenon | |- ( A e. On -> A e. dom card ) |
|
| 11 | 10 | adantr | |- ( ( A e. On /\ x e. A ) -> A e. dom card ) |
| 12 | cardsdomel | |- ( ( x e. On /\ A e. dom card ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( A e. On /\ x e. A ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
| 14 | 13 | ralbidva | |- ( A e. On -> ( A. x e. A x ~< A <-> A. x e. A x e. ( card ` A ) ) ) |
| 15 | 8 14 | bitr4id | |- ( A e. On -> ( A C_ ( card ` A ) <-> A. x e. A x ~< A ) ) |
| 16 | 7 15 | bitr3d | |- ( A e. On -> ( ( card ` A ) = A <-> A. x e. A x ~< A ) ) |
| 17 | 3 16 | biadanii | |- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |