This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl , this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elharval | |- ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( Y e. ( har ` X ) -> X e. _V ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex2i | |- ( Y ~<_ X -> X e. _V ) |
| 4 | 3 | adantl | |- ( ( Y e. On /\ Y ~<_ X ) -> X e. _V ) |
| 5 | harval | |- ( X e. _V -> ( har ` X ) = { y e. On | y ~<_ X } ) |
|
| 6 | 5 | eleq2d | |- ( X e. _V -> ( Y e. ( har ` X ) <-> Y e. { y e. On | y ~<_ X } ) ) |
| 7 | breq1 | |- ( y = Y -> ( y ~<_ X <-> Y ~<_ X ) ) |
|
| 8 | 7 | elrab | |- ( Y e. { y e. On | y ~<_ X } <-> ( Y e. On /\ Y ~<_ X ) ) |
| 9 | 6 8 | bitrdi | |- ( X e. _V -> ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) ) ) |
| 10 | 1 4 9 | pm5.21nii | |- ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) ) |