This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cofinality function at 0. Exercise 2 of TakeutiZaring p. 102. (Contributed by NM, 16-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cf0 | |- ( cf ` (/) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfub | |- ( cf ` (/) ) C_ |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } |
|
| 2 | 0ss | |- (/) C_ U. y |
|
| 3 | 2 | biantru | |- ( y C_ (/) <-> ( y C_ (/) /\ (/) C_ U. y ) ) |
| 4 | ss0b | |- ( y C_ (/) <-> y = (/) ) |
|
| 5 | 3 4 | bitr3i | |- ( ( y C_ (/) /\ (/) C_ U. y ) <-> y = (/) ) |
| 6 | 5 | anbi1ci | |- ( ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> ( y = (/) /\ x = ( card ` y ) ) ) |
| 7 | 6 | exbii | |- ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> E. y ( y = (/) /\ x = ( card ` y ) ) ) |
| 8 | 0ex | |- (/) e. _V |
|
| 9 | fveq2 | |- ( y = (/) -> ( card ` y ) = ( card ` (/) ) ) |
|
| 10 | 9 | eqeq2d | |- ( y = (/) -> ( x = ( card ` y ) <-> x = ( card ` (/) ) ) ) |
| 11 | 8 10 | ceqsexv | |- ( E. y ( y = (/) /\ x = ( card ` y ) ) <-> x = ( card ` (/) ) ) |
| 12 | card0 | |- ( card ` (/) ) = (/) |
|
| 13 | 12 | eqeq2i | |- ( x = ( card ` (/) ) <-> x = (/) ) |
| 14 | 7 11 13 | 3bitri | |- ( E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) <-> x = (/) ) |
| 15 | 14 | abbii | |- { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { x | x = (/) } |
| 16 | df-sn | |- { (/) } = { x | x = (/) } |
|
| 17 | 15 16 | eqtr4i | |- { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = { (/) } |
| 18 | 17 | inteqi | |- |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = |^| { (/) } |
| 19 | 8 | intsn | |- |^| { (/) } = (/) |
| 20 | 18 19 | eqtri | |- |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ (/) /\ (/) C_ U. y ) ) } = (/) |
| 21 | 1 20 | sseqtri | |- ( cf ` (/) ) C_ (/) |
| 22 | ss0b | |- ( ( cf ` (/) ) C_ (/) <-> ( cf ` (/) ) = (/) ) |
|
| 23 | 21 22 | mpbi | |- ( cf ` (/) ) = (/) |