This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The map in cff1 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfsmo | |- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | |- ( x = z -> dom x = dom z ) |
|
| 2 | 1 | fveq2d | |- ( x = z -> ( h ` dom x ) = ( h ` dom z ) ) |
| 3 | fveq2 | |- ( n = m -> ( x ` n ) = ( x ` m ) ) |
|
| 4 | suceq | |- ( ( x ` n ) = ( x ` m ) -> suc ( x ` n ) = suc ( x ` m ) ) |
|
| 5 | 3 4 | syl | |- ( n = m -> suc ( x ` n ) = suc ( x ` m ) ) |
| 6 | 5 | cbviunv | |- U_ n e. dom x suc ( x ` n ) = U_ m e. dom x suc ( x ` m ) |
| 7 | fveq1 | |- ( x = z -> ( x ` m ) = ( z ` m ) ) |
|
| 8 | suceq | |- ( ( x ` m ) = ( z ` m ) -> suc ( x ` m ) = suc ( z ` m ) ) |
|
| 9 | 7 8 | syl | |- ( x = z -> suc ( x ` m ) = suc ( z ` m ) ) |
| 10 | 1 9 | iuneq12d | |- ( x = z -> U_ m e. dom x suc ( x ` m ) = U_ m e. dom z suc ( z ` m ) ) |
| 11 | 6 10 | eqtrid | |- ( x = z -> U_ n e. dom x suc ( x ` n ) = U_ m e. dom z suc ( z ` m ) ) |
| 12 | 2 11 | uneq12d | |- ( x = z -> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) = ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) |
| 13 | 12 | cbvmptv | |- ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) = ( z e. _V |-> ( ( h ` dom z ) u. U_ m e. dom z suc ( z ` m ) ) ) |
| 14 | eqid | |- ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) = ( recs ( ( x e. _V |-> ( ( h ` dom x ) u. U_ n e. dom x suc ( x ` n ) ) ) ) |` ( cf ` A ) ) |
|
| 15 | 13 14 | cfsmolem | |- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. z e. A E. w e. ( cf ` A ) z C_ ( f ` w ) ) ) |