This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 2 | 0ss | |- (/) C_ A |
|
| 3 | 0elon | |- (/) e. On |
|
| 4 | alephord3 | |- ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( aleph ` (/) ) C_ ( aleph ` A ) ) ) |
|
| 5 | 3 4 | mpan | |- ( A e. On -> ( (/) C_ A <-> ( aleph ` (/) ) C_ ( aleph ` A ) ) ) |
| 6 | 2 5 | mpbii | |- ( A e. On -> ( aleph ` (/) ) C_ ( aleph ` A ) ) |
| 7 | 1 6 | eqsstrrid | |- ( A e. On -> _om C_ ( aleph ` A ) ) |
| 8 | peano1 | |- (/) e. _om |
|
| 9 | ordom | |- Ord _om |
|
| 10 | ord0 | |- Ord (/) |
|
| 11 | ordtri1 | |- ( ( Ord _om /\ Ord (/) ) -> ( _om C_ (/) <-> -. (/) e. _om ) ) |
|
| 12 | 9 10 11 | mp2an | |- ( _om C_ (/) <-> -. (/) e. _om ) |
| 13 | 12 | con2bii | |- ( (/) e. _om <-> -. _om C_ (/) ) |
| 14 | 8 13 | mpbi | |- -. _om C_ (/) |
| 15 | ndmfv | |- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
|
| 16 | 15 | sseq2d | |- ( -. A e. dom aleph -> ( _om C_ ( aleph ` A ) <-> _om C_ (/) ) ) |
| 17 | 14 16 | mtbiri | |- ( -. A e. dom aleph -> -. _om C_ ( aleph ` A ) ) |
| 18 | 17 | con4i | |- ( _om C_ ( aleph ` A ) -> A e. dom aleph ) |
| 19 | alephfnon | |- aleph Fn On |
|
| 20 | 19 | fndmi | |- dom aleph = On |
| 21 | 18 20 | eleqtrdi | |- ( _om C_ ( aleph ` A ) -> A e. On ) |
| 22 | 7 21 | impbii | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |