This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of Suppes p. 97. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomdomtr | |- ( ( A ~< B /\ B ~<_ C ) -> A ~< C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | domtr | |- ( ( A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
|
| 3 | 1 2 | sylan | |- ( ( A ~< B /\ B ~<_ C ) -> A ~<_ C ) |
| 4 | simpl | |- ( ( A ~< B /\ B ~<_ C ) -> A ~< B ) |
|
| 5 | simpr | |- ( ( A ~< B /\ B ~<_ C ) -> B ~<_ C ) |
|
| 6 | ensym | |- ( A ~~ C -> C ~~ A ) |
|
| 7 | domentr | |- ( ( B ~<_ C /\ C ~~ A ) -> B ~<_ A ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( ( A ~< B /\ B ~<_ C ) /\ A ~~ C ) -> B ~<_ A ) |
| 9 | domnsym | |- ( B ~<_ A -> -. A ~< B ) |
|
| 10 | 8 9 | syl | |- ( ( ( A ~< B /\ B ~<_ C ) /\ A ~~ C ) -> -. A ~< B ) |
| 11 | 10 | ex | |- ( ( A ~< B /\ B ~<_ C ) -> ( A ~~ C -> -. A ~< B ) ) |
| 12 | 4 11 | mt2d | |- ( ( A ~< B /\ B ~<_ C ) -> -. A ~~ C ) |
| 13 | brsdom | |- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
|
| 14 | 3 12 13 | sylanbrc | |- ( ( A ~< B /\ B ~<_ C ) -> A ~< C ) |