This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephislim | |- ( A e. On <-> Lim ( aleph ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 2 | cardlim | |- ( _om C_ ( card ` ( aleph ` A ) ) <-> Lim ( card ` ( aleph ` A ) ) ) |
|
| 3 | alephcard | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
|
| 4 | 3 | sseq2i | |- ( _om C_ ( card ` ( aleph ` A ) ) <-> _om C_ ( aleph ` A ) ) |
| 5 | limeq | |- ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) -> ( Lim ( card ` ( aleph ` A ) ) <-> Lim ( aleph ` A ) ) ) |
|
| 6 | 3 5 | ax-mp | |- ( Lim ( card ` ( aleph ` A ) ) <-> Lim ( aleph ` A ) ) |
| 7 | 2 4 6 | 3bitr3i | |- ( _om C_ ( aleph ` A ) <-> Lim ( aleph ` A ) ) |
| 8 | 1 7 | bitri | |- ( A e. On <-> Lim ( aleph ` A ) ) |