This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercnlem2.i | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
||
| Assertion | psercnlem2 | |- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) M ) /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ ( `' abs " ( 0 [,] M ) ) /\ ( `' abs " ( 0 [,] M ) ) C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercnlem2.i | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
|
| 7 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 8 | absf | |- abs : CC --> RR |
|
| 9 | 8 | fdmi | |- dom abs = CC |
| 10 | 7 9 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 11 | 5 10 | eqsstri | |- S C_ CC |
| 12 | 11 | a1i | |- ( ph -> S C_ CC ) |
| 13 | 12 | sselda | |- ( ( ph /\ a e. S ) -> a e. CC ) |
| 14 | 13 | abscld | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
| 15 | 13 | absge0d | |- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
| 16 | 6 | simp2d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < M ) |
| 17 | 0re | |- 0 e. RR |
|
| 18 | 6 | simp1d | |- ( ( ph /\ a e. S ) -> M e. RR+ ) |
| 19 | 18 | rpxrd | |- ( ( ph /\ a e. S ) -> M e. RR* ) |
| 20 | elico2 | |- ( ( 0 e. RR /\ M e. RR* ) -> ( ( abs ` a ) e. ( 0 [,) M ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < M ) ) ) |
|
| 21 | 17 19 20 | sylancr | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) e. ( 0 [,) M ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < M ) ) ) |
| 22 | 14 15 16 21 | mpbir3and | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. ( 0 [,) M ) ) |
| 23 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 24 | elpreima | |- ( abs Fn CC -> ( a e. ( `' abs " ( 0 [,) M ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) M ) ) ) ) |
|
| 25 | 8 23 24 | mp2b | |- ( a e. ( `' abs " ( 0 [,) M ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) M ) ) ) |
| 26 | 13 22 25 | sylanbrc | |- ( ( ph /\ a e. S ) -> a e. ( `' abs " ( 0 [,) M ) ) ) |
| 27 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 28 | 27 | cnbl0 | |- ( M e. RR* -> ( `' abs " ( 0 [,) M ) ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 29 | 19 28 | syl | |- ( ( ph /\ a e. S ) -> ( `' abs " ( 0 [,) M ) ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 30 | 26 29 | eleqtrd | |- ( ( ph /\ a e. S ) -> a e. ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 31 | icossicc | |- ( 0 [,) M ) C_ ( 0 [,] M ) |
|
| 32 | imass2 | |- ( ( 0 [,) M ) C_ ( 0 [,] M ) -> ( `' abs " ( 0 [,) M ) ) C_ ( `' abs " ( 0 [,] M ) ) ) |
|
| 33 | 31 32 | mp1i | |- ( ( ph /\ a e. S ) -> ( `' abs " ( 0 [,) M ) ) C_ ( `' abs " ( 0 [,] M ) ) ) |
| 34 | 29 33 | eqsstrrd | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) C_ ( `' abs " ( 0 [,] M ) ) ) |
| 35 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 36 | 1 3 4 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ a e. S ) -> R e. ( 0 [,] +oo ) ) |
| 38 | 35 37 | sselid | |- ( ( ph /\ a e. S ) -> R e. RR* ) |
| 39 | 6 | simp3d | |- ( ( ph /\ a e. S ) -> M < R ) |
| 40 | df-ico | |- [,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w < v ) } ) |
|
| 41 | df-icc | |- [,] = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w <_ v ) } ) |
|
| 42 | xrlelttr | |- ( ( z e. RR* /\ M e. RR* /\ R e. RR* ) -> ( ( z <_ M /\ M < R ) -> z < R ) ) |
|
| 43 | 40 41 42 | ixxss2 | |- ( ( R e. RR* /\ M < R ) -> ( 0 [,] M ) C_ ( 0 [,) R ) ) |
| 44 | 38 39 43 | syl2anc | |- ( ( ph /\ a e. S ) -> ( 0 [,] M ) C_ ( 0 [,) R ) ) |
| 45 | imass2 | |- ( ( 0 [,] M ) C_ ( 0 [,) R ) -> ( `' abs " ( 0 [,] M ) ) C_ ( `' abs " ( 0 [,) R ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( ph /\ a e. S ) -> ( `' abs " ( 0 [,] M ) ) C_ ( `' abs " ( 0 [,) R ) ) ) |
| 47 | 46 5 | sseqtrrdi | |- ( ( ph /\ a e. S ) -> ( `' abs " ( 0 [,] M ) ) C_ S ) |
| 48 | 30 34 47 | 3jca | |- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) M ) /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ ( `' abs " ( 0 [,] M ) ) /\ ( `' abs " ( 0 [,] M ) ) C_ S ) ) |