This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrestr | |- ( ( J e. V /\ S e. W /\ A e. J ) -> ( A i^i S ) e. ( J |`t S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A i^i S ) = ( A i^i S ) |
|
| 2 | ineq1 | |- ( x = A -> ( x i^i S ) = ( A i^i S ) ) |
|
| 3 | 2 | rspceeqv | |- ( ( A e. J /\ ( A i^i S ) = ( A i^i S ) ) -> E. x e. J ( A i^i S ) = ( x i^i S ) ) |
| 4 | 1 3 | mpan2 | |- ( A e. J -> E. x e. J ( A i^i S ) = ( x i^i S ) ) |
| 5 | elrest | |- ( ( J e. V /\ S e. W ) -> ( ( A i^i S ) e. ( J |`t S ) <-> E. x e. J ( A i^i S ) = ( x i^i S ) ) ) |
|
| 6 | 4 5 | imbitrrid | |- ( ( J e. V /\ S e. W ) -> ( A e. J -> ( A i^i S ) e. ( J |`t S ) ) ) |
| 7 | 6 | 3impia | |- ( ( J e. V /\ S e. W /\ A e. J ) -> ( A i^i S ) e. ( J |`t S ) ) |