This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Since by pserulm the series converges uniformly, it is also continuous by ulmcn . (Contributed by Mario Carneiro, 3-Mar-2015) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| pserulm.h | |- H = ( i e. NN0 |-> ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
||
| pserulm.m | |- ( ph -> M e. RR ) |
||
| pserulm.l | |- ( ph -> M < R ) |
||
| pserulm.y | |- ( ph -> S C_ ( `' abs " ( 0 [,] M ) ) ) |
||
| Assertion | psercn2 | |- ( ph -> F e. ( S -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | pserulm.h | |- H = ( i e. NN0 |-> ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
|
| 6 | pserulm.m | |- ( ph -> M e. RR ) |
|
| 7 | pserulm.l | |- ( ph -> M < R ) |
|
| 8 | pserulm.y | |- ( ph -> S C_ ( `' abs " ( 0 [,] M ) ) ) |
|
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 11 | cnvimass | |- ( `' abs " ( 0 [,] M ) ) C_ dom abs |
|
| 12 | absf | |- abs : CC --> RR |
|
| 13 | 12 | fdmi | |- dom abs = CC |
| 14 | 11 13 | sseqtri | |- ( `' abs " ( 0 [,] M ) ) C_ CC |
| 15 | 8 14 | sstrdi | |- ( ph -> S C_ CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ i e. NN0 ) -> S C_ CC ) |
| 17 | 16 | resmptd | |- ( ( ph /\ i e. NN0 ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) = ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
| 18 | simplr | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> y e. CC ) |
|
| 19 | elfznn0 | |- ( k e. ( 0 ... i ) -> k e. NN0 ) |
|
| 20 | 19 | adantl | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) |
| 21 | 1 | pserval2 | |- ( ( y e. CC /\ k e. NN0 ) -> ( ( G ` y ) ` k ) = ( ( A ` k ) x. ( y ^ k ) ) ) |
| 22 | 18 20 21 | syl2anc | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> ( ( G ` y ) ` k ) = ( ( A ` k ) x. ( y ^ k ) ) ) |
| 23 | simpr | |- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
|
| 24 | 23 9 | eleqtrdi | |- ( ( ph /\ i e. NN0 ) -> i e. ( ZZ>= ` 0 ) ) |
| 25 | 24 | adantr | |- ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) -> i e. ( ZZ>= ` 0 ) ) |
| 26 | 3 | adantr | |- ( ( ph /\ i e. NN0 ) -> A : NN0 --> CC ) |
| 27 | 26 | ffvelcdmda | |- ( ( ( ph /\ i e. NN0 ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 28 | 27 | adantlr | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 29 | expcl | |- ( ( y e. CC /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
|
| 30 | 29 | adantll | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
| 31 | 28 30 | mulcld | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) |
| 32 | 19 31 | sylan2 | |- ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) |
| 33 | 22 25 32 | fsumser | |- ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) -> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) = ( seq 0 ( + , ( G ` y ) ) ` i ) ) |
| 34 | 33 | mpteq2dva | |- ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) = ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
| 35 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 36 | 35 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 37 | 36 | a1i | |- ( ( ph /\ i e. NN0 ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 38 | fzfid | |- ( ( ph /\ i e. NN0 ) -> ( 0 ... i ) e. Fin ) |
|
| 39 | 36 | a1i | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 40 | ffvelcdm | |- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
|
| 41 | 26 19 40 | syl2an | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( A ` k ) e. CC ) |
| 42 | 39 39 41 | cnmptc | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( A ` k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 43 | 19 | adantl | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) |
| 44 | 35 | expcn | |- ( k e. NN0 -> ( y e. CC |-> ( y ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 45 | 43 44 | syl | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( y ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 46 | 35 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 47 | 46 | a1i | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 48 | oveq12 | |- ( ( u = ( A ` k ) /\ v = ( y ^ k ) ) -> ( u x. v ) = ( ( A ` k ) x. ( y ^ k ) ) ) |
|
| 49 | 39 42 45 39 39 47 48 | cnmpt12 | |- ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( ( A ` k ) x. ( y ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 50 | 35 37 38 49 | fsumcn | |- ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 51 | 35 | cncfcn1 | |- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 52 | 50 51 | eleqtrrdi | |- ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) e. ( CC -cn-> CC ) ) |
| 53 | 34 52 | eqeltrrd | |- ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( CC -cn-> CC ) ) |
| 54 | rescncf | |- ( S C_ CC -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( CC -cn-> CC ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) e. ( S -cn-> CC ) ) ) |
|
| 55 | 16 53 54 | sylc | |- ( ( ph /\ i e. NN0 ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) e. ( S -cn-> CC ) ) |
| 56 | 17 55 | eqeltrrd | |- ( ( ph /\ i e. NN0 ) -> ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( S -cn-> CC ) ) |
| 57 | 56 5 | fmptd | |- ( ph -> H : NN0 --> ( S -cn-> CC ) ) |
| 58 | 1 2 3 4 5 6 7 8 | pserulm | |- ( ph -> H ( ~~>u ` S ) F ) |
| 59 | 9 10 57 58 | ulmcn | |- ( ph -> F e. ( S -cn-> CC ) ) |