This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for psercn . (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
||
| Assertion | psercnlem1 | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
|
| 7 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 8 | absf | |- abs : CC --> RR |
|
| 9 | 8 | fdmi | |- dom abs = CC |
| 10 | 7 9 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 11 | 5 10 | eqsstri | |- S C_ CC |
| 12 | 11 | a1i | |- ( ph -> S C_ CC ) |
| 13 | 12 | sselda | |- ( ( ph /\ a e. S ) -> a e. CC ) |
| 14 | 13 | abscld | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
| 15 | readdcl | |- ( ( ( abs ` a ) e. RR /\ R e. RR ) -> ( ( abs ` a ) + R ) e. RR ) |
|
| 16 | 14 15 | sylan | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( abs ` a ) + R ) e. RR ) |
| 17 | 16 | rehalfcld | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( ( abs ` a ) + R ) / 2 ) e. RR ) |
| 18 | peano2re | |- ( ( abs ` a ) e. RR -> ( ( abs ` a ) + 1 ) e. RR ) |
|
| 19 | 14 18 | syl | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + 1 ) e. RR ) |
| 20 | 19 | adantr | |- ( ( ( ph /\ a e. S ) /\ -. R e. RR ) -> ( ( abs ` a ) + 1 ) e. RR ) |
| 21 | 17 20 | ifclda | |- ( ( ph /\ a e. S ) -> if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) e. RR ) |
| 22 | 6 21 | eqeltrid | |- ( ( ph /\ a e. S ) -> M e. RR ) |
| 23 | 0re | |- 0 e. RR |
|
| 24 | 23 | a1i | |- ( ( ph /\ a e. S ) -> 0 e. RR ) |
| 25 | 13 | absge0d | |- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
| 26 | breq2 | |- ( ( ( ( abs ` a ) + R ) / 2 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) <-> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) ) |
|
| 27 | breq2 | |- ( ( ( abs ` a ) + 1 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( abs ` a ) < ( ( abs ` a ) + 1 ) <-> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) ) |
|
| 28 | simpr | |- ( ( ph /\ a e. S ) -> a e. S ) |
|
| 29 | 28 5 | eleqtrdi | |- ( ( ph /\ a e. S ) -> a e. ( `' abs " ( 0 [,) R ) ) ) |
| 30 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 31 | elpreima | |- ( abs Fn CC -> ( a e. ( `' abs " ( 0 [,) R ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) ) |
|
| 32 | 8 30 31 | mp2b | |- ( a e. ( `' abs " ( 0 [,) R ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) |
| 33 | 29 32 | sylib | |- ( ( ph /\ a e. S ) -> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) |
| 34 | 33 | simprd | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. ( 0 [,) R ) ) |
| 35 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 36 | 1 3 4 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 37 | 36 | adantr | |- ( ( ph /\ a e. S ) -> R e. ( 0 [,] +oo ) ) |
| 38 | 35 37 | sselid | |- ( ( ph /\ a e. S ) -> R e. RR* ) |
| 39 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` a ) e. ( 0 [,) R ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) ) |
|
| 40 | 23 38 39 | sylancr | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) e. ( 0 [,) R ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) ) |
| 41 | 34 40 | mpbid | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) |
| 42 | 41 | simp3d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < R ) |
| 43 | 42 | adantr | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( abs ` a ) < R ) |
| 44 | avglt1 | |- ( ( ( abs ` a ) e. RR /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) ) |
|
| 45 | 14 44 | sylan | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) ) |
| 46 | 43 45 | mpbid | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) |
| 47 | 14 | ltp1d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + 1 ) ) |
| 48 | 47 | adantr | |- ( ( ( ph /\ a e. S ) /\ -. R e. RR ) -> ( abs ` a ) < ( ( abs ` a ) + 1 ) ) |
| 49 | 26 27 46 48 | ifbothda | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) |
| 50 | 49 6 | breqtrrdi | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < M ) |
| 51 | 24 14 22 25 50 | lelttrd | |- ( ( ph /\ a e. S ) -> 0 < M ) |
| 52 | 22 51 | elrpd | |- ( ( ph /\ a e. S ) -> M e. RR+ ) |
| 53 | breq1 | |- ( ( ( ( abs ` a ) + R ) / 2 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( ( ( abs ` a ) + R ) / 2 ) < R <-> if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) < R ) ) |
|
| 54 | breq1 | |- ( ( ( abs ` a ) + 1 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( ( abs ` a ) + 1 ) < R <-> if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) < R ) ) |
|
| 55 | avglt2 | |- ( ( ( abs ` a ) e. RR /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( ( ( abs ` a ) + R ) / 2 ) < R ) ) |
|
| 56 | 14 55 | sylan | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( ( ( abs ` a ) + R ) / 2 ) < R ) ) |
| 57 | 43 56 | mpbid | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( ( abs ` a ) + R ) / 2 ) < R ) |
| 58 | 19 | rexrd | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + 1 ) e. RR* ) |
| 59 | 38 58 | xrlenltd | |- ( ( ph /\ a e. S ) -> ( R <_ ( ( abs ` a ) + 1 ) <-> -. ( ( abs ` a ) + 1 ) < R ) ) |
| 60 | 0xr | |- 0 e. RR* |
|
| 61 | pnfxr | |- +oo e. RR* |
|
| 62 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
|
| 63 | 60 61 62 | mp2an | |- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 64 | 36 63 | sylib | |- ( ph -> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 65 | 64 | simp2d | |- ( ph -> 0 <_ R ) |
| 66 | 65 | adantr | |- ( ( ph /\ a e. S ) -> 0 <_ R ) |
| 67 | ge0gtmnf | |- ( ( R e. RR* /\ 0 <_ R ) -> -oo < R ) |
|
| 68 | 38 66 67 | syl2anc | |- ( ( ph /\ a e. S ) -> -oo < R ) |
| 69 | xrre | |- ( ( ( R e. RR* /\ ( ( abs ` a ) + 1 ) e. RR ) /\ ( -oo < R /\ R <_ ( ( abs ` a ) + 1 ) ) ) -> R e. RR ) |
|
| 70 | 69 | expr | |- ( ( ( R e. RR* /\ ( ( abs ` a ) + 1 ) e. RR ) /\ -oo < R ) -> ( R <_ ( ( abs ` a ) + 1 ) -> R e. RR ) ) |
| 71 | 38 19 68 70 | syl21anc | |- ( ( ph /\ a e. S ) -> ( R <_ ( ( abs ` a ) + 1 ) -> R e. RR ) ) |
| 72 | 59 71 | sylbird | |- ( ( ph /\ a e. S ) -> ( -. ( ( abs ` a ) + 1 ) < R -> R e. RR ) ) |
| 73 | 72 | con1d | |- ( ( ph /\ a e. S ) -> ( -. R e. RR -> ( ( abs ` a ) + 1 ) < R ) ) |
| 74 | 73 | imp | |- ( ( ( ph /\ a e. S ) /\ -. R e. RR ) -> ( ( abs ` a ) + 1 ) < R ) |
| 75 | 53 54 57 74 | ifbothda | |- ( ( ph /\ a e. S ) -> if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) < R ) |
| 76 | 6 75 | eqbrtrid | |- ( ( ph /\ a e. S ) -> M < R ) |
| 77 | 52 50 76 | 3jca | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |