This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pserdv . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
||
| Assertion | pserdvlem1 | |- ( ( ph /\ a e. S ) -> ( ( ( ( abs ` a ) + M ) / 2 ) e. RR+ /\ ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) /\ ( ( ( abs ` a ) + M ) / 2 ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
|
| 7 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 8 | absf | |- abs : CC --> RR |
|
| 9 | 8 | fdmi | |- dom abs = CC |
| 10 | 7 9 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 11 | 5 10 | eqsstri | |- S C_ CC |
| 12 | 11 | a1i | |- ( ph -> S C_ CC ) |
| 13 | 12 | sselda | |- ( ( ph /\ a e. S ) -> a e. CC ) |
| 14 | 13 | abscld | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
| 15 | 1 2 3 4 5 6 | psercnlem1 | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
| 16 | 15 | simp1d | |- ( ( ph /\ a e. S ) -> M e. RR+ ) |
| 17 | 16 | rpred | |- ( ( ph /\ a e. S ) -> M e. RR ) |
| 18 | 14 17 | readdcld | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR ) |
| 19 | 0red | |- ( ( ph /\ a e. S ) -> 0 e. RR ) |
|
| 20 | 13 | absge0d | |- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
| 21 | 14 16 | ltaddrpd | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + M ) ) |
| 22 | 19 14 18 20 21 | lelttrd | |- ( ( ph /\ a e. S ) -> 0 < ( ( abs ` a ) + M ) ) |
| 23 | 18 22 | elrpd | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR+ ) |
| 24 | 23 | rphalfcld | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR+ ) |
| 25 | 15 | simp2d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < M ) |
| 26 | avglt1 | |- ( ( ( abs ` a ) e. RR /\ M e. RR ) -> ( ( abs ` a ) < M <-> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) ) |
|
| 27 | 14 17 26 | syl2anc | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) < M <-> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) ) |
| 28 | 25 27 | mpbid | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) |
| 29 | 18 | rehalfcld | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR ) |
| 30 | 29 | rexrd | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) |
| 31 | 17 | rexrd | |- ( ( ph /\ a e. S ) -> M e. RR* ) |
| 32 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 33 | 1 3 4 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 34 | 32 33 | sselid | |- ( ph -> R e. RR* ) |
| 35 | 34 | adantr | |- ( ( ph /\ a e. S ) -> R e. RR* ) |
| 36 | avglt2 | |- ( ( ( abs ` a ) e. RR /\ M e. RR ) -> ( ( abs ` a ) < M <-> ( ( ( abs ` a ) + M ) / 2 ) < M ) ) |
|
| 37 | 14 17 36 | syl2anc | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) < M <-> ( ( ( abs ` a ) + M ) / 2 ) < M ) ) |
| 38 | 25 37 | mpbid | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) < M ) |
| 39 | 15 | simp3d | |- ( ( ph /\ a e. S ) -> M < R ) |
| 40 | 30 31 35 38 39 | xrlttrd | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) < R ) |
| 41 | 24 28 40 | 3jca | |- ( ( ph /\ a e. S ) -> ( ( ( ( abs ` a ) + M ) / 2 ) e. RR+ /\ ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) /\ ( ( ( abs ` a ) + M ) / 2 ) < R ) ) |