This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muval2 | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( ( mmu ` A ) =/= 0 <-> -. ( mmu ` A ) = 0 ) |
|
| 2 | ifeqor | |- ( if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 \/ if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
|
| 3 | muval | |- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
|
| 4 | 3 | eqeq1d | |- ( A e. NN -> ( ( mmu ` A ) = 0 <-> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) ) |
| 5 | 3 | eqeq1d | |- ( A e. NN -> ( ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) <-> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 6 | 4 5 | orbi12d | |- ( A e. NN -> ( ( ( mmu ` A ) = 0 \/ ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) <-> ( if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 \/ if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) ) |
| 7 | 2 6 | mpbiri | |- ( A e. NN -> ( ( mmu ` A ) = 0 \/ ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 8 | 7 | ord | |- ( A e. NN -> ( -. ( mmu ` A ) = 0 -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 9 | 1 8 | biimtrid | |- ( A e. NN -> ( ( mmu ` A ) =/= 0 -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 10 | 9 | imp | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |